Skip to main content

Advertisement

Log in

Imaging re-evaluation of the tympanic segment of the facial nerve canal using cone-beam computed tomography compared with multi-slice computed tomography

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to evaluate the imaging findings of cone-beam computed tomography (CBCT) in displaying subtle structures of the tympanic segment of the facial nerve canal in human cadaver heads compared with multi-slice computed tomography (MSCT).

Methods

Between January 2017 and July 2017, images of the tympanic segment of the facial nerve canal acquired from 73 human cadaver ears by both CBCT and MSCT were prospectively studied. Then, images of the lateral and inferior walls of the tympanic segment were scored using standard imaging slices through a four-point rating scale. Subsequently, the detailed findings of these two imaging modalities were recorded and compared, including interruptions of the bony walls, thread-like bony tubes connected with the walls, and separations in the cavity. The Wilcoxon signed-rank test was used to investigate the differences between scores derived by CBCT and MSCT.

Results

The mean score in the inferior and lateral walls by CBCT were significantly higher than that by MSCT (P = 0.000–0.005), which ranged from 2.0 (1.5, 2.5) to 3.5 (3.0, 4.0), and from 1.5 (1.0, 2.0) to 3.5 (2.5, 4.0), respectively. The interruption of the walls was most common at the anterior part of the inferior wall (38/73 cases). Furthermore, thread-like bony tubes were evident in 18 ears, which connected with the anterior part of the inferior wall (18/73 cases). Moreover, separation was found in 22 ears in the posterior part (22/73 cases).

Conclusions

CBCT can readily demonstrate subtle imaging findings of the tympanic segment of the facial nerve canal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mortazavi MM, Latif B, Verma K, Adeeb N, Deep A, Griessenauer CJ, Tubbs RS, Fukushima T (2014) The fallopian canal: a comprehensive review and proposal of a new classification. Childs Nerv Syst 30:387–395. https://doi.org/10.1007/s00381-013-2332-0

    Article  CAS  PubMed  Google Scholar 

  2. Yadav SP, Ranga A, Sirohiwal BL, Chanda R (2006) Surgical anatomy of tympano-mastoid segment of facial nerve. Indian J Otolaryngol Head Neck Surg 58:27–30. https://doi.org/10.1007/BF02907734

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nikolaidis V, Nalbadian M, Psifidis A, Themelis C, Kouloulas A (2009) The tympanic segment of the facial nerve: anatomical study. Clin Anat 22:307–310. https://doi.org/10.1002/ca.20749

    Article  PubMed  Google Scholar 

  4. Chen JY, Mafee MF (2014) Computed tomography imaging technique and normal computed tomography anatomy of the temporal bone. Oper Tech Otolayngol Head Neck Surg 25:3–12. https://doi.org/10.1016/j.otot.2013.11.002

    Article  Google Scholar 

  5. Ho ML, Juliano A, Eisenberg RL, Moonis G (2015) Anatomy and pathology of the facial nerve. AJR Am J Roentgenol 204:W612–W619. https://doi.org/10.2214/AJR.14.13444

    Article  PubMed  Google Scholar 

  6. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R (2009) Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 71:461–468. https://doi.org/10.1016/j.ejrad.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Nemtoi A, Czink C, Haba D, Gahleitner A (2013) Cone beam CT: a current overview of devices. Dentomaxillofacial Radiol 42:20120443. https://doi.org/10.1259/dmfr.20120443

    Article  CAS  Google Scholar 

  8. Jain NV, Gharatkar AA, Parekh BA, Musani SI, Shah UD (2017) Three-dimensional analysis of the anatomical characteristics and dimensions of the nasopalatine canal using cone beam computed tomography. J Maxillofac Oral Surg 16:197–204. https://doi.org/10.1007/s12663-016-0879-5

    Article  PubMed  Google Scholar 

  9. De Cock J, Zanca F, Canning J, Pauwels R, Hermans R (2015) A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging. Eur Radiol 25:1891–1900. https://doi.org/10.1007/s00330-015-3593-7

    Article  PubMed  Google Scholar 

  10. Hodez C, Griffaton-Taillandier C, Bensimon I (2011) Cone-beam imaging: applications in ENT. Eur Ann Otorhinolaryngol Head Neck Dis 128:65–78. https://doi.org/10.1016/j.anorl.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  11. Hatcher DC (2012) CT & CBCT imaging: assessment of the orbits. Oral Maxillofac Surg Clin N Am 24:537–543. https://doi.org/10.1016/j.coms.2012.07.003

    Article  Google Scholar 

  12. Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas L, Souza PC, Martens W, Shahbazian M, Alonso A, Lambrichts I (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) part I. On subjective image quality. Eur J Radiol 75:265–269. https://doi.org/10.1016/j.ejrad.2009.03.042

    Article  PubMed  Google Scholar 

  13. Tüccar E, Tekdemir I, Aslan A, Elhan A, Deda H (2000) Radiological anatomy of the intratemporal course of facial nerve. Clin Anat 13:83–87. https://doi.org/10.1002/(SICI)1098-2353(2000)13:2<3c83:AID-CA2>3e3.0.CO;2-Y

    Article  PubMed  Google Scholar 

  14. Yu Z, Wang Z, Yang B, Han D, Zhang L (2011) The value of preoperative CT scan of tympanic facial nerve canal in tympanomastoid surgery. Acta Otolaryngol 131:774–778. https://doi.org/10.3109/00016489.2011.554439

    Article  PubMed  Google Scholar 

  15. Valavanis A, Kubik S, Oguz M (1983) Exploration of the facial nerve canal by high-resolution computed tomography: anatomy and pathology. Neuroradiology 24:139–147

    Article  CAS  PubMed  Google Scholar 

  16. Casselman JW, Gieraerts K, Volders D, Delanote J, Mermuys K, De Foer B, Swennen G (2013) Cone beam CT: non-dental applications. JBR BTR 96:333–353

    CAS  PubMed  Google Scholar 

  17. Güldner C, Diogo I, Bernd E, Dräger S, Mandapathil M, Teymoortash A, Negm H, Wilhelm T (2017) Visualization of anatomy in normal and pathologic middle ears by cone beam CT. Eur Arch Otorhinolaryngol 274:737–742. https://doi.org/10.1007/s00405-016-4345-2

    Article  PubMed  Google Scholar 

  18. Zou J, Lӓhelmӓ J, Arnisalo A, Pyykkö I (2017) Clinically relevant human temporal bone measurements using novel high-resolution cone-beam CT. J Otol 12:9–17

    Article  PubMed  PubMed Central  Google Scholar 

  19. Penninger RT, Tavassolie TS, Carey JP (2011) Cone-beam volumetric tomography for applications in the temporal bone. Otol Neurotol 32:453–460. https://doi.org/10.1097/MAO.0b013e31820d962c

    Article  PubMed  Google Scholar 

  20. Peltonen LI, Aarnisalo AA, Käser Y, Kortesniemi MK, Robinson S, Suomalainen A, Jero J (2009) Cone-beam computed tomography: a new method for imaging of the temporal bone. Acta Radiol 50:543–548. https://doi.org/10.1080/02841850902839700

    Article  CAS  PubMed  Google Scholar 

  21. Akbulut N, Kursun S, Aksoy S, Kurt H, Orhan K (2014) Evaluation of foramen tympanicum using cone-beam computed tomography in orthodontic malocclusions. J Craniofac Surg 25:e105–e109. https://doi.org/10.1097/SCS.0000000000000440

    Article  PubMed  Google Scholar 

  22. Komori M, Yamada K, Hinohira Y, Aritomo H, Yanagihara N (2013) Width of the normal facial canal measured by high-resolution cone-beam computed tomography. Acta Otolaryngol 133:1227–1232. https://doi.org/10.3109/00016489.2013.816443

    Article  PubMed  Google Scholar 

  23. Yang B, Zhang F, Jiang X (2011) Imageology study of the relationship between supratubal recess and the course of cholesteatoma. Chin J Otol 9:136–138

    Google Scholar 

  24. Mavridis IN, Pyrgelis ES (2016) Clinical anatomy of the lesser petrosal nerve. Arch Neurosci 3:e34168. https://doi.org/10.5812/archneurosci.34168

    Article  Google Scholar 

  25. Kakizawa Y, Abe H, Fukushima Y, Hongo K, El-Khouly H, Rhoton AL Jr (2007) The course of the lesser petrosal nerve on the middle cranial fossa. Neurosurgery 61:15–23. https://doi.org/10.1227/01.neu.0000289707.49684.a3

    Article  PubMed  Google Scholar 

  26. Vidić B (1968) The origin and the course of the communicating branch of the facial nerve to the lesser petrosal nerve in man. Anat Rec 162:511–516. https://doi.org/10.1002/ar.1091620413

    Article  PubMed  Google Scholar 

  27. Porto AF Jr, Whicker J, Proud GO (1978) An anatomic study of the hypotympanic branch of Jacobson’s nerve. Laryngoscope 88:56–60

    Article  PubMed  Google Scholar 

  28. Kanzara T, Hall A, Virk JS, Leung B, Singh A (2014) Clinical anatomy of the tympanic nerve: a review. World J Otorhinolaryngol 4:17–22. https://doi.org/10.5319/wjo.v4.i4.17

    Article  Google Scholar 

  29. Toulgoat F, Sarrazin JL, Benoudiba F, Pereon Y, Auffray-Calvier E, Daumas-Duport B, Lintia-Gaultier A, Desal HA (2013) Facial nerve: from anatomy to pathology. Diagn Interv Imaging 94:1033–1042. https://doi.org/10.1016/j.diii.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  30. Baxter A (1971) Dehiscence of the fallopian canal. An anatomical study. J Laryngol Otol 85:587–594

    Article  CAS  PubMed  Google Scholar 

  31. Di Martino E, Sellhaus B, Haensel J, Schlegel JG, Westhofen M, Prescher A (2005) Fallopian canal dehiscences: a survey of clinical and anatomical findings. Eur Arch Otorhinolaryngol 262:120–126. https://doi.org/10.1007/s00405-004-0867-0

    Article  PubMed  Google Scholar 

  32. Faramarzi M, Roosta S (2017) Incidence of facial nerve canal dehiscence in primary and revision cholesteatoma surgery. Indian J Otolaryngol Head Neck Surg 69:300–306. https://doi.org/10.1007/s12070-017-1094-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Perez B, Campos ME, Rivero J, Lopez Campos D, López-Aguado D (1997) Incidence of dehiscences in the fallopian canal. Int J Pediatr Otorhinolaryngol 40:51–60

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (61527807 and 81371546); Natural Science Foundation of Beijing Municipality (7172064 and 7162048); Beijing Scholars Program [(2015)160]; Beijing Municipal Administration of Hospitals’ Mission Plan (SML20150101); Beijing Municipal Science and Technology commission “Leading talent” Project (Z141107001514002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenchang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yin, H., Wang, Z. et al. Imaging re-evaluation of the tympanic segment of the facial nerve canal using cone-beam computed tomography compared with multi-slice computed tomography. Eur Arch Otorhinolaryngol 276, 1933–1941 (2019). https://doi.org/10.1007/s00405-019-05419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-019-05419-3

Keywords

Navigation