Skip to main content
Log in

Glutaminolysis and carcinogenesis of oral squamous cell carcinoma

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Glutaminolysis is a crucial factor for tumor metabolism in the carcinogenesis of several tumors but has not been clarified for oral squamous cell carcinoma (OSCC) yet. Expression of glutaminolysis-related solute carrier family 1, member 5 (SLC1A5)/neutral amino acid transporter (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLDH) was analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I–III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. SLC1A5/ASCT2 and GLS were significantly overexpressed in the carcinogenesis of OSCC compared with normal tissue, while GLDH was weakly detected. Compared with SIN I–III SLC1A5/ASCT2 and GLS expression were significantly increased in OSCC. GLDH expression did not significantly differ from SIN I–III compared with OSCC. This study shows the first evidence of glutaminolysis-related SLC1A5/ASCT2, GLS, and GLDH expression in OSCC. The very weak GLDH expression indicates that glutamine metabolism is rather related to nucleotide or protein/hexosamine biosynthesis or to the function as an antioxidant (glutathione) than to energy production or generation of lactate through entering the tricarboxylic acid cycle. Overcoming glutaminolysis by targeting c-Myc oncogene (e.g. by natural compounds) and thereby cross-activation of mammalian target of rapamycin complex 1 or SLC1A5/ASCT2, GLS inhibitors may be a useful strategy to sensitize cancer cells to common OSCC cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SIN:

Squamous intraepithelial neoplasia

OSCC:

Oral squamous cell carcinoma

SLC1A5:

Solute carrier family 1, member 5

GLS:

Glutaminase

GLDH:

Glutamate dehydrogenase

TCA:

Tricarboxylic acid cycle

mTOR:

Mammalian target of rapamycin

References

  1. Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S (2014) Association of cancer metabolism-related proteins with oral carcinogenesis-indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 12:208. doi:10.1186/1479-5876-12-208

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig 123(9):3678–3684. doi:10.1172/JCI69600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Alfarouk KO, Shayoub ME, Muddathir AK, Elhassan GO, Bashir AH (2011) Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (dismantling of multicellularity). Cancers (Basel) 3(3):3002–3017. doi:10.3390/cancers3033002

    Article  CAS  Google Scholar 

  4. Ogawa T, Washio J, Takahashi T, Echigo S, Takahashi N (2014) Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach. Oral Surg Oral Med Oral Pathol Oral Radiol 118(2):218–225. doi:10.1016/j.oooo.2014.04.003

    Article  PubMed  Google Scholar 

  5. Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, Davis-Malesevich M, Priebe W, Myers JN (2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer 117(13):2926–2938. doi:10.1002/cncr.25868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12(11):939–948. doi:10.4161/cbt.12.11.18140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Mates JM, Segura JA, Campos-Sandoval JA, Lobo C, Alonso L, Alonso FJ, Marquez J (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41(10):2051–2061. doi:10.1016/j.biocel.2009.03.003

    Article  PubMed  CAS  Google Scholar 

  8. Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct 21(1):1–9. doi:10.1002/cbf.1003

    Article  PubMed  CAS  Google Scholar 

  9. Goto M, Miwa H, Shikami M, Tsunekawa-Imai N, Suganuma K, Mizuno S, Takahashi M, Mizutani M, Hanamura I, Nitta M (2014) Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Investig 32(6):241–247. doi:10.3109/07357907.2014.907419

    Article  CAS  Google Scholar 

  10. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61. doi:10.1016/j.gde.2008.02.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Driemel O, Hertel K, Reichert TE, Kosmehl H (2006) Current classification of precursor lesions of oral squamous cell carcinoma principles of the WHO classification 2005. Mund Kiefer Gesichtschir 10(2):89–93. doi:10.1007/s10006-006-0675-3

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka T, Tanaka M, Tanaka T (2011) Oral carcinogenesis and oral cancer chemoprevention: a review. Pathol Res Int 2011:431246. doi:10.4061/2011/431246

    Article  Google Scholar 

  13. Sobin LH, Wittekind Ch (2010) UICC. TNM classification of malignant tumors, 7th edn. Springer, Berlin

  14. Hamilton SR, Aaltonen LA (2000) Pathology and genetics. Tumours of the digestive system, 3rd edn. IARC Press, Lyon

    Google Scholar 

  15. Walker RA (2006) Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment I. Histopathology 49(4):406–410. doi:10.1111/j.1365-2559.2006.02514.x

    Article  PubMed  CAS  Google Scholar 

  16. Alexander D, Hoffmann J, Munz A, Friedrich B, Geis-Gerstorfer J, Reinert S (2008) Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells. J Mater Sci Mater Med 19(3):965–974. doi:10.1007/s10856-007-3351-8

    Article  PubMed  CAS  Google Scholar 

  17. von Rahden BH, Kircher S, Kafka M, Stuermer L, Reiber C, Gattenlohner S, Germer CT, Grimm M (2010) Glucocorticoid-induced TNFR family-related receptor (GITR)-expression in tumor infiltrating leucocytes (TILs) is associated with the pathogenesis of esophageal adenocarcinomas with and without Barrett’s mucosa. Cancer Biomark Sect A Dis Markers 7(6):285–294. doi:10.3233/CBM-2010-0192

    Google Scholar 

  18. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499

    Article  PubMed  CAS  Google Scholar 

  19. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  PubMed  CAS  Google Scholar 

  20. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6(19):2332–2338. doi:10.4161/cc.6.19.4914

    Article  PubMed  CAS  Google Scholar 

  21. Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69(20):7986–7993. doi:10.1158/0008-5472.CAN-09-2266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO, Cantley LC, Blenis J (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38(4):487–499. doi:10.1016/j.molcel.2010.05.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yin C, Qie S, Sang N (2012) Carbon source metabolism and its regulation in cancer cells. Crit Rev Eukaryot Gene Expr 22(1):17–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364(Pt 1):309–315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Meng M, Chen S, Lao T, Liang D, Sang N (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9(19):3921–3932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Dang CV (2010) Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 9(19):3884–3886

    Article  PubMed  CAS  Google Scholar 

  27. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24(24):2784–2799. doi:10.1101/gad.1985910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178(1):93–105. doi:10.1083/jcb.200703099

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765. doi:10.1038/nature07823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787. doi:10.1073/pnas.0810199105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hayry V, Makinen LK, Atula T, Sariola H, Makitie A, Leivo I, Keski-Santti H, Lundin J, Haglund C, Hagstrom J (2010) Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer 102(5):892–897. doi:10.1038/sj.bjc.6605544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Perez-Sayans M, Suarez-Penaranda JM, Padin-Iruegas E, Gayoso-Diz P, Reis-De Almeida M, Barros-Angueira F, Gandara-Vila P, Blanco-Carrion A, Garcia-Garcia A (2014) Quantitative determination of c-myc facilitates the assessment of prognosis of OSCC patients. Oncol Rep 31(4):1677–1682. doi:10.3892/or.2014.3040

    PubMed  CAS  Google Scholar 

  33. Shah NG, Trivedi TI, Tankshali RA, Goswami JV, Jetly DH, Shukla SN, Shah PM, Verma RJ (2009) Prognostic significance of molecular markers in oral squamous cell carcinoma: a multivariate analysis. Head Neck 31(12):1544–1556. doi:10.1002/hed.21126

    Article  PubMed  Google Scholar 

  34. Su Y, Simmen RC (2009) Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis 30(2):331–339. doi:10.1093/carcin/bgn279

    Article  PubMed  Google Scholar 

  35. Kobayashi N, Barnard RJ, Said J, Hong-Gonzalez J, Corman DM, Ku M, Doan NB, Gui D, Elashoff D, Cohen P, Aronson WJ (2008) Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res 68(8):3066–3073. doi:10.1158/0008-5472.CAN-07-5616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Du YP, Peng JS, Sun A, Tang ZH, Ling WH, Zhu HL (2009) Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model. BMC Cancer 9:261. doi:10.1186/1471-2407-9-261

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu R, Wang X, Sun DF, Tian XQ, Zhao SL, Chen YX, Fang JY (2008) Folic acid and sodium butyrate prevent tumorigenesis in a mouse model of colorectal cancer. Epigenetics 3(6):330–335

    Article  PubMed  Google Scholar 

  38. Li C, Li M, Chen P, Narayan S, Matschinsky FM, Bennett MJ, Stanley CA, Smith TJ (2011) Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286(39):34164–34174. doi:10.1074/jbc.M111.268599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Griffiths M, Keast D, Patrick G, Crawford M, Palmer TN (1993) The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int J Biochem 25(12):1749–1755

    Article  PubMed  CAS  Google Scholar 

  40. Ahluwalia GS, Grem JL, Hao Z, Cooney DA (1990) Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 46(2):243–271

    Article  PubMed  CAS  Google Scholar 

  41. Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47(3):349–358. doi:10.1016/j.molcel.2012.05.043

    Article  PubMed  CAS  Google Scholar 

  42. Duran RV, Hall MN (2012) Glutaminolysis feeds mTORC1. Cell Cycle 11(22):4107–4108. doi:10.4161/cc.22632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Kamata S, Kishimoto T, Kobayashi S, Miyazaki M, Ishikura H (2007) Possible involvement of persistent activity of the mammalian target of rapamycin pathway in the cisplatin resistance of AFP-producing gastric cancer cells. Cancer Biol Ther 6(7):1036–1043

    Article  PubMed  CAS  Google Scholar 

  44. Lee KH, Hur HS, Im SA, Lee J, Kim HP, Yoon YK, Han SW, Song SH, Oh DY, Kim TY, Bang YJ (2010) RAD001 shows activity against gastric cancer cells and overcomes 5-FU resistance by downregulating thymidylate synthase. Cancer Lett 299(1):22–28. doi:10.1016/j.canlet.2010.07.020

    Article  PubMed  CAS  Google Scholar 

  45. Yu CC, Hung SK, Liao HF, Lee CC, Lin HY, Lai HC, Li SC, Ho HC, Huang HB, Su YC (2014) RAD001 enhances the radiosensitivity of SCC4 oral cancer cells by inducing cell cycle arrest at the G2/M checkpoint. Anticancer Res 34(6):2927–2935

    PubMed  CAS  Google Scholar 

  46. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183. doi:10.1016/j.molcel.2010.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zha X, Sun Q, Zhang H (2011) mTOR upregulation of glycolytic enzymes promotes tumor development. Cell Cycle 10(7):1015–1016

    Article  PubMed  CAS  Google Scholar 

  48. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534. doi:10.1016/j.cell.2008.11.044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Shukla SK, Gebregiworgis T, Purohit V, Chaika NV, Gunda V, Radhakrishnan P, Mehla K, Pipinos II, Powers R, Yu F, Singh PK (2014) Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2:18. doi:10.1186/2049-3002-2-18

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grimm M (2012) Prognostic value of clinicopathological parameters and outcome in 484 patients with oral squamous cell carcinoma: microvascular invasion (V+) is an independent prognostic factor for OSCC. Clin Transl Oncol 14(11):870–880. doi:10.1007/s12094-012-0867-2

    Article  PubMed  CAS  Google Scholar 

  51. Perez-Sayans M, Suarez-Penaranda JM, Pilar GD, Barros-Angueira F, Gandara-Rey JM, Garcia-Garcia A (2011) Hypoxia-inducible factors in OSCC. Cancer Lett 313(1):1–8. doi:10.1016/j.canlet.2011.08.017

    Article  PubMed  CAS  Google Scholar 

  52. Wu MC, Arimura GK, Yunis AA (1978) Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int J Cancer Journal international du cancer 22(6):728–733

    Article  PubMed  CAS  Google Scholar 

  53. Narta UK, Kanwar SS, Azmi W (2007) Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol 61(3):208–221. doi:10.1016/j.critrevonc.2006.07.009

    Article  PubMed  Google Scholar 

  54. Avramis VI, Panosyan EH (2005) Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet 44(4):367–393. doi:10.2165/00003088-200544040-00003

    Article  PubMed  CAS  Google Scholar 

  55. Lessner HE, Valenstein S, Kaplan R, DeSimone P, Yunis A (1980) Phase II study of l-asparaginase in the treatment of pancreatic carcinoma. Cancer Treat Rep 64(12):1359–1361

    PubMed  CAS  Google Scholar 

  56. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med 356(22):2282–2292. doi:10.1056/NEJMoa066596

    Article  PubMed  CAS  Google Scholar 

  57. Thibault A, Samid D, Cooper MR, Figg WD, Tompkins AC, Patronas N, Headlee DJ, Kohler DR, Venzon DJ, Myers CE (1995) Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer 75(12):2932–2938

    Article  PubMed  CAS  Google Scholar 

  58. Thibault A, Cooper MR, Figg WD, Venzon DJ, Sartor AO, Tompkins AC, Weinberger MS, Headlee DJ, McCall NA, Samid D et al (1994) A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res 54(7):1690–1694

    PubMed  CAS  Google Scholar 

  59. Ploessl K, Wang L, Lieberman BP, Qu W, Kung HF (2012) Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. J Nucl Med 53(10):1616–1624. doi:10.2967/jnumed.111.101279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Julia Grimm for her technical assistance.

Conflict of interest

The authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grimm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetindis, M., Biegner, T., Munz, A. et al. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma. Eur Arch Otorhinolaryngol 273, 495–503 (2016). https://doi.org/10.1007/s00405-015-3543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3543-7

Keywords

Navigation