Skip to main content

Advertisement

Log in

Role of near-infrared fluorescence imaging in head and neck cancer surgery: from animal models to humans

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Complete resection of head and neck cancers with negative surgical margins improves the prognosis of the disease and decreases the recurrence rate. Near-infrared fluorescence-guided surgery of head and neck cancer is a rapidly evolving field that represents an invaluable tool for tumor detection and resection. Here, we present a literature review of the principles of near-infrared fluorescence imaging and its use in head and neck cancer surgery. We discuss important studies in both animal models and humans that have been carried out up to this point. We also outline the important fluorescent molecules and devices used in head and neck fluorescence imaging-guided surgery. Although near-infrared fluorescence-guided surgery for head and neck cancers showed efficacy in animal models, its use in humans is limited by the small number of fluorescent probes that are approved for clinical use. However, it is considered as a novel surgical aid that helps delineate tumor margins preoperatively and could spare patients from the added morbidity that is associated with additional surgery or chemoradiation. In addition, it is a useful tool to detect sentinel lymph nodes as well as metastatic lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mehanna H, Paleri V, West CM, Nutting C (2011) Head and neck cancer-part 1: epidemiology, presentation, and preservation. Clin Otolaryngol 36(1):65–68. doi:10.1111/j.1749-4486.2010.02231.x

    Article  CAS  PubMed  Google Scholar 

  2. Payakachat N, Ounpraseuth S, Suen JY (2013) Late complications and long-term quality of life for survivors (>5 years) with history of head and neck cancer. Head Neck 35(6):819–825. doi:10.1002/hed.23035

    Article  PubMed  Google Scholar 

  3. Swinson B, Jerjes W, El-Maaytah M, Norris P, Hopper C (2006) Optical techniques in diagnosis of head and neck malignancy. Oral Oncol 42(3):221–228. doi:10.1016/j.oraloncology.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  4. Gioux S, Coutard JG, Berger M, Grateau H, Josserand V, Keramidas M, Righini C, Coll JL, Dinten JM (2012) FluoSTIC: miniaturized fluorescence image-guided surgery system. J Biomed Opt 17(10):106014. doi:10.1117/1.JBO.17.10.106014

    Article  PubMed  Google Scholar 

  5. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9(5):237–255

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Svistun E, Alizadeh-Naderi R, El-Naggar A, Jacob R, Gillenwater A, Richards-Kortum R (2004) Vision enhancement system for detection of oral cavity neoplasia based on autofluorescence. Head Neck 26(3):205–215. doi:10.1002/hed.10381

    Article  PubMed  Google Scholar 

  7. Poh CF, Ng SP, Williams PM, Zhang L, Laronde DM, Lane P, Macaulay C, Rosin MP (2007) Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck 29(1):71–76. doi:10.1002/hed.20468

    Article  PubMed  Google Scholar 

  8. Tan NC, Herd MK, Brennan PA, Puxeddu R (2012) The role of narrow band imaging in early detection of head and neck cancer. Br J Oral Maxillofac Surg 50(2):132–136. doi:10.1016/j.bjoms.2010.12.001

    Article  PubMed  Google Scholar 

  9. Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S, Omori T, Sugiura H, Goda K, Kaise M, Inoue H, Ishikawa H, Ochiai A, Shimoda T, Watanabe H, Tajiri H, Saito D (2010) Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol 28(9):1566–1572. doi:10.1200/JCO.2009.25.4680

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hori K, Okada H, Kawahara Y, Takenaka R, Shimizu S, Ohno Y, Onoda T, Sirakawa Y, Naomoto Y, Yamamoto K (2011) Lugol-voiding lesions are an important risk factor for a second primary squamous cell carcinoma in patients with esophageal cancer or head and neck cancer. Am J Gastroenterol 106(5):858–866. doi:10.1038/ajg.2010.489

    Article  PubMed  Google Scholar 

  11. Jayaprakash V, Sullivan M, Merzianu M, Rigual NR, Loree TR, Popat SR, Moysich KB, Ramananda S, Johnson T, Marshall JR, Hutson AD, Mang TS, Wilson BC, Gill SR, Frustino J, Bogaards A, Reid ME (2009) Autofluorescence-guided surveillance for oral cancer. Cancer Prev Res (Phila) 2(11):966–974. doi:10.1158/1940-6207.CAPR-09-0062

    Article  Google Scholar 

  12. van Driel PB, van der Vorst JR, Verbeek FP, Oliveira S, Snoeks TJ, Keereweer S, Frangioni JV, van Bergen En Henegouwen PM, Vahrmeijer AL, Lowik CW (2013) Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer. doi:10.1002/ijc.28601

    PubMed Central  PubMed  Google Scholar 

  13. Gibbs SL (2012) Near infrared fluorescence for image-guided surgery. Quant Imaging Med Surg 2(3):177–187. doi:10.3978/j.issn.2223-4292.2012.09.04.qims-02-03-177

    PubMed Central  PubMed  Google Scholar 

  14. Hussain T, Nguyen QT (2013) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev. doi:10.1016/j.addr.2013.09.007

    PubMed Central  PubMed  Google Scholar 

  15. Bredell MG (2010) Sentinel lymph node mapping by indocyanin green fluorescence imaging in oropharyngeal cancer—preliminary experience. Head Neck Oncol 2:31. doi:10.1186/1758-3284-2-31

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nakamura Y, Fujisawa Y, Maruyama H, Furuta J, Kawachi Y, Otsuka F (2013) Improvement of the sentinel lymph node detection rate of cervical sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in head and neck skin cancer. J Dermatol 40(6):453–457. doi:10.1111/1346-8138.12158

    Article  PubMed  Google Scholar 

  17. van der Vorst JR, Schaafsma BE, Verbeek FP, Keereweer S, Jansen JC, van der Velden LA, Langeveld AP, Hutteman M, Lowik CW, van de Velde CJ, Frangioni JV, Vahrmeijer AL (2013) Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncol 49(1):15–19. doi:10.1016/j.oraloncology.2012.07.017

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gleysteen JP, Duncan RD, Magnuson JS, Skipper JB, Zinn K, Rosenthal EL (2007) Fluorescently labeled cetuximab to evaluate head and neck cancer response to treatment. Cancer Biol Ther 6(8):1181–1185 (pii):4379

    Article  CAS  PubMed  Google Scholar 

  19. Gleysteen JP, Newman JR, Chhieng D, Frost A, Zinn KR, Rosenthal EL (2008) Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model. Head Neck 30(6):782–789. doi:10.1002/hed.20782

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yang K, Zhao C, Cao YA, Tang H, Bai YL, Huang H, Zhao CR, Chen R, Zhao D (2012) In vivo and in situ imaging of head and neck squamous cell carcinoma using near-infrared fluorescent quantum dot probes conjugated with epidermal growth factor receptor monoclonal antibodies in mice. Oncol Rep 27(6):1925–1931. doi:10.3892/or.2012.1705

    CAS  PubMed  Google Scholar 

  21. Huang H, Bai YL, Yang K, Tang H, Wang YW (2013) Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine-aspartic acid peptide conjugated near-infrared quantum dots. Onco Targets Ther 6:1779–1787. doi:10.2147/OTT.S53901ott-6-1779

    PubMed Central  PubMed  Google Scholar 

  22. Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ, van Bergen en Henegouwen PM (2012) Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging 11(1):33–46

    CAS  PubMed  Google Scholar 

  23. Keereweer S, Kerrebijn JD, Mol IM, Mieog JS, Van Driel PB, Baatenburg de Jong RJ, Vahrmeijer AL, Lowik CW (2012) Optical imaging of oral squamous cell carcinoma and cervical lymph node metastasis. Head Neck 34(7):1002–1008. doi:10.1002/hed.21861

    Article  PubMed  Google Scholar 

  24. Fabricius EM, Wildner GP, Kruse-Boitschenko U, Hoffmeister B, Goodman SL, Raguse JD (2011) Immunohistochemical analysis of integrins alphavbeta3, alphavbeta5 and alpha5beta1, and their ligands, fibrinogen, fibronectin, osteopontin and vitronectin, in frozen sections of human oral head and neck squamous cell carcinomas. Exp Ther Med 2(1):9–19. doi:10.3892/etm.2010.171etm-02-01-0009

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, Watzlowik P, Wester HJ, Haubner R, Schwaiger M (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(22 Pt 1):6610–6616. doi:10.1158/1078-0432.CCR-07-0528

    Article  CAS  PubMed  Google Scholar 

  26. Li P, Liu F, Sun L, Zhao Z, Ding X, Shang D, Xu Z, Sun C (2011) Chemokine receptor 7 promotes cell migration and adhesion in metastatic squamous cell carcinoma of the head and neck by activating integrin alphavbeta3. Int J Mol Med 27(5):679–687. doi:10.3892/ijmm.2011.628

    CAS  PubMed  Google Scholar 

  27. Jin ZH, Josserand V, Razkin J, Garanger E, Boturyn D, Favrot MC, Dumy P, Coll JL (2006) Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging 5(3):188–197

    PubMed  Google Scholar 

  28. Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, Coll JL (2007) In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer 6:41. doi:10.1186/1476-4598-6-41

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sancey L, Ardisson V, Riou LM, Ahmadi M, Marti-Batlle D, Boturyn D, Dumy P, Fagret D, Ghezzi C, Vuillez JP (2007) In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD. Eur J Nucl Med Mol Imaging 34(12):2037–2047. doi:10.1007/s00259-007-0497-z

    Article  CAS  PubMed  Google Scholar 

  30. Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL (2005) New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors. Mol Ther 12(6):1168–1175. doi:10.1016/j.ymthe.2005.06.095

    Article  CAS  PubMed  Google Scholar 

  31. Wenk CH, Ponce F, Guillermet S, Tenaud C, Boturyn D, Dumy P, Watrelot-Virieux D, Carozzo C, Josserand V, Coll JL (2013) Near-infrared optical guided surgery of highly infiltrative fibrosarcomas in cats using an anti-alphavss3 integrin molecular probe. Cancer Lett 334(2):188–195. doi:10.1016/j.canlet.2012.10.041

    Article  CAS  PubMed  Google Scholar 

  32. Keramidas M, Josserand V, Righini CA, Wenk C, Faure C, Coll JL (2010) Intraoperative near-infrared image-guided surgery for peritoneal carcinomatosis in a preclinical experimental model. Br J Surg 97(5):737–743. doi:10.1002/bjs.6986

    Article  CAS  PubMed  Google Scholar 

  33. Xie BW, Mol IM, Keereweer S, van Beek ER, Que I, Snoeks TJ, Chan A, Kaijzel EL, Lowik CW (2012) Dual-wavelength imaging of tumor progression by activatable and targeting near-infrared fluorescent probes in a bioluminescent breast cancer model. PLoS One 7(2):e31875. doi:10.1371/journal.pone.0031875PONE-D-11-16502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Withrow KP, Newman JR, Skipper JB, Gleysteen JP, Magnuson JS, Zinn K, Rosenthal EL (2008) Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat 7(1):61–66

    Article  CAS  PubMed  Google Scholar 

  35. Shan L, Hao Y, Wang S, Korotcov A, Zhang R, Wang T, Califano J, Gu X, Sridhar R, Bhujwalla ZM, Wang PC (2008) Visualizing head and neck tumors in vivo using near-infrared fluorescent transferrin conjugate. Mol Imaging 7(1):42–49

    CAS  PubMed  Google Scholar 

  36. Keereweer S, Sterenborg HJ, Kerrebijn JD, Van Driel PB, Baatenburg de Jong RJ, Lowik CW (2012) Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck 34(1):120–126. doi:10.1002/hed.21625

    Article  CAS  PubMed  Google Scholar 

  37. Yokoyama J, Fujimaki M, Ohba S, Anzai T, Yoshii R, Ito S, Kojima M, Ikeda K (2013) A feasibility study of NIR fluorescent image-guided surgery in head and neck cancer based on the assessment of optimum surgical time as revealed through dynamic imaging. Onco Targets Ther 6:325–330. doi:10.2147/OTT.S42006ott-6-325

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sharkey FE, Fogh J (1984) Considerations in the use of nude mice for cancer research. Cancer Metastasis Rev 3(4):341–360

    Article  CAS  PubMed  Google Scholar 

  39. Kim S (2009) Animal models of cancer in the head and neck region. Clin Exp Otorhinolaryngol 2(2):55–60. doi:10.3342/ceo.2009.2.2.55

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lu SL, Herrington H, Wang XJ (2006) Mouse models for human head and neck squamous cell carcinomas. Head Neck 28(10):945–954. doi:10.1002/hed.20397

    Article  PubMed  Google Scholar 

  41. Cabanillas R, Secades P, Rodrigo JP, Astudillo A, Suarez C, Chiara MD (2005) Orthotopic murine model of head and neck squamous cell carcinoma. Acta Otorrinolaringol Esp 56(3):89–95

    Article  CAS  PubMed  Google Scholar 

  42. Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL (2012) Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19(12):3879–3887. doi:10.1245/s10434-012-2435-y

    Article  PubMed Central  PubMed  Google Scholar 

  43. Day KE, Sweeny L, Kulbersh B, Zinn KR, Rosenthal EL (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15(6):722–729. doi:10.1007/s11307-013-0652-9

    Article  PubMed Central  PubMed  Google Scholar 

  44. Keereweer S, Mol IM, Kerrebijn JD, Van Driel PB, Xie B, Baatenburg de Jong RJ, Vahrmeijer AL, Lowik CW (2012) Targeting integrins and enhanced permeability and retention (EPR) effect for optical imaging of oral cancer. J Surg Oncol 105(7):714–718. doi:10.1002/jso.22102

    Article  CAS  PubMed  Google Scholar 

  45. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR (2007) Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 6(4):1230–1238. doi:10.1158/1535-7163.MCT-06-0741

    Article  CAS  PubMed  Google Scholar 

  46. Brouwer OR, Klop WM, Buckle T, Vermeeren L, van den Brekel MW, Balm AJ, Nieweg OE, Valdes Olmos RA, van Leeuwen FW (2012) Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol 19(6):1988–1994. doi:10.1245/s10434-011-2180-7

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ohnishi S, Lomnes SJ, Laurence RG, Gogbashian A, Mariani G, Frangioni JV (2005) Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping. Mol Imaging 4(3):172–181

    PubMed  Google Scholar 

  48. Sandanaraj BS, Gremlich HU, Kneuer R, Dawson J, Wacha S (2010) Fluorescent nanoprobes as a biomarker for increased vascular permeability: implications in diagnosis and treatment of cancer and inflammation. Bioconjug Chem 21(1):93–101. doi:10.1021/bc900311h

    Article  CAS  PubMed  Google Scholar 

  49. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802. doi:10.1021/bc100070g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Groupe Pasteur Mutualité and the Société Française d’ORL. Authors declare that they have no financial relationship with these organizations.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihab Atallah.

Additional information

C. A. Righini and A. Hurbin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atallah, I., Milet, C., Coll, JL. et al. Role of near-infrared fluorescence imaging in head and neck cancer surgery: from animal models to humans. Eur Arch Otorhinolaryngol 272, 2593–2600 (2015). https://doi.org/10.1007/s00405-014-3224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3224-y

Keywords

Navigation