Skip to main content

Advertisement

Log in

Polyhexanide-containing solution reduces ciliary beat frequency of human nasal epithelial cells in vitro

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

In ENT, polyhexanide-containing solutions are used to treat nasal infections caused by multiresistant bacteria like methicillin-resistant Staphylococcus aureus. Many forms of commercial nasal solutions containing polyhexanide exist, such as gels or solutions for topical use. Data regarding the influence of polyhexanide on ciliary beat frequency (CBF) are lacking to date. We tested the CBF of nasal ciliated epithelial cells under the influence of a commercially available polyhexanide-containing solution (Lavasept® Concentrate) in a therapeutic concentration (0.04, 0.02 %). In addition, we tested the concentrations of 0.1 and 0.01 %. Cells were visualized with a phase contrast microscope, and the CBF was measured with the SAVA system’s region of interest method. Ringer’s solution and macrogol served as negative controls. A therapeutic concentration of Lavasept significantly reduced CBF in a time- and concentration-dependent manner. After 1 min, the CBF was reduced from 8.90 ± 1.64 to 5.00 ± 3.72 Hz with a concentration of 0.04 % (p value = 0.001). After 10 min, all cilia stopped beating. After 5 min, a 0.02 % solution of Lavasept concentrate decreased CBF significantly from 8.64 ± 1.71 to 3.30 ± 3.27 Hz (p value < 0.001). In conclusion, CBF of human nasal epithelia is significantly reduced with the use of the polyhexanide-containing solution Lavasept in some therapeutic concentrations. Due to our findings in this study, Lavasept should be used on ciliated mucosa only with caution and in a concentration of 0.02 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willenegger H (1994) Local antiseptics in surgery–rebirth and advances. Unfallchirurgie 20(2):94–110

    Article  CAS  PubMed  Google Scholar 

  2. Rohner E, Seeger JB, Hoff P, Pfitzner T, Preininger B, Andreas K, Buttgereit F, Perka C, Matziolis G (2011) Preferred use of polyhexanide in orthopedic surgery. Orthopedics 34(10):e664–e668. doi:10.3928/01477447-20110826-10

    PubMed  Google Scholar 

  3. Ikeda T, Tazuke S, Watanabe M (1983) Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. Biochim Biophys Acta 735(3):380–386

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda T, Ledwith A, Bamford CH, Hann RA (1984) Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta 769(1):57–66

    Article  CAS  PubMed  Google Scholar 

  5. Seipp HM, Hoffmann S, Hack A, Skowronsky A, Hauri A (2005) Efficacy of various wound irrigation solutions against biofilms. Zf W (4):160–164

  6. Gelardi M, Passalacqua G, Fiorella ML, Quaranta N (2013) Assessment of biofilm by nasal cytology in different forms of rhinitis and its functional correlations. Eur Ann Allergy Clin Immunol 45(1):25–29

    CAS  PubMed  Google Scholar 

  7. Kaehn K (2010) Polihexanide: a safe and highly effective biocide. Skin Pharmacol Physiol 23(Suppl):7–16. doi:10.1159/000318237

    Article  CAS  PubMed  Google Scholar 

  8. Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kindel E, Kocher T, Kramer A (2010) Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol 23(Suppl):28–34. doi:10.1159/000318265

    Article  PubMed  Google Scholar 

  9. Kusnetsov JM, Tulkki AI, Ahonen HE, Martikainen PJ (1997) Efficacy of three prevention strategies against legionella in cooling water systems. J Appl Microbiol 82(6):763–768

    Article  CAS  PubMed  Google Scholar 

  10. Wild T, Bruckner M, Payrich M, Schwarz C, Eberlein T, Andriessen A (2012) Eradication of methicillin-resistant Staphylococcus aureus in pressure ulcers comparing a polyhexanide-containing cellulose dressing with polyhexanide swabs in a prospective randomized study. Adv Skin Wound Care 25(1):17–22. doi:10.1097/01.ASW.0000410686.14363.ea

    Article  PubMed  Google Scholar 

  11. Assadian O, Wehse K, Hubner NO, Koburger T, Bagel S, Jethon F, Kramer A (2011) Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains. GMS Krankenhhyg Interdiszip 6 (1):Doc06. doi:10.3205/dgkh000163

  12. Ansorg R, Rath PM, Fabry W (2003) Inhibition of the anti-staphylococcal activity of the antiseptic polihexanide by mucin. Arzneimittelforschung 53(5):368–371. doi:10.1055/s-0031-1297121

    CAS  PubMed  Google Scholar 

  13. Chapman KR, Allen LJ, Romet TT (1990) Pulmonary function in normal subjects following exercise at cold ambient temperatures. Eur J Appl Physiol Occup Physiol 60(3):228–232

    Article  CAS  PubMed  Google Scholar 

  14. Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52:137–155. doi:10.1146/annurev.ph.52.030190.001033

    Article  CAS  PubMed  Google Scholar 

  15. Hilfinger A, Chattopadhyay AK, Julicher F (2009) Nonlinear dynamics of cilia and flagella. Phys Rev E Stat Nonlinear Soft Matter Phys 79(5 Pt 1):051918

    Article  Google Scholar 

  16. Stannard W, O’Callaghan C (2006) Ciliary function and the role of cilia in clearance. J Aerosol Med 19(1):110–115. doi:10.1089/jam.2006.19.110

    Article  CAS  PubMed  Google Scholar 

  17. Jorissen M, Bessems A (1995) Influence of culture duration and ciliogenesis on the relationship between ciliary beat frequency and temperature in nasal epithelial cells. Eur Arch Otorhinolaryngol 252(8):451–454

    Article  CAS  PubMed  Google Scholar 

  18. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325(5944):1131–1134. doi:10.1126/science.1173869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen B, Shaari J, Claire SE, Palmer JN, Chiu AG, Kennedy DW, Cohen NA (2006) Altered sinonasal ciliary dynamics in chronic rhinosinusitis. Am J Rhinol 20(3):325–329

    Article  PubMed  Google Scholar 

  20. Elliott MK, Sisson JH, Wyatt TA (2007) Effects of cigarette smoke and alcohol on ciliated tracheal epithelium and inflammatory cell recruitment. Am J Respir Cell Mol Biol 36(4):452–459. doi:10.1165/rcmb.2005-0440OC

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sommer JU, Gross S, Hormann K, Stuck BA (2010) Time-dependent changes in nasal ciliary beat frequency. Eur Arch Otorhinolaryngol 267(9):1383–1387. doi:10.1007/s00405-010-1211-5

    Article  PubMed  Google Scholar 

  22. Sommer JU, Kraus M, Birk R, Schultz JD, Hormann K, Stuck BA (2013) Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium. Sleep & breathing = Schlaf & Atmung. doi:10.1007/s11325-013-0853-0

  23. Sommer JU, Schafer K, Omran H, Olbrich H, Wallmeier J, Blum A, Hormann K, Stuck BA (2011) ENT manifestations in patients with primary ciliary dyskinesia: prevalence and significance of otorhinolaryngologic co-morbidities. Eur Arch Otorhinolaryngol 268(3):383–388. doi:10.1007/s00405-010-1341-9

    Article  PubMed  Google Scholar 

  24. Thomas B, Rutman A, O’Callaghan C (2009) Disrupted ciliated epithelium shows slower ciliary beat frequency and increased dyskinesia. Eur Respir J 34(2):401–404. doi:10.1183/09031936.00153308

    Article  CAS  PubMed  Google Scholar 

  25. Sisson JH, Stoner JA, Ammons BA, Wyatt TA (2003) All-digital image capture and whole-field analysis of ciliary beat frequency. J Microsc 211(Pt 2):103–111

    Article  CAS  PubMed  Google Scholar 

  26. Sommer JU, Gross S, Hormann K, Stuck BA (2010) Time-dependent changes in nasal ciliary beat frequency. Eur Arch Otorhinolaryngol 267(9):1383–1387. doi:10.1007/s00405-010-1211-5

    Article  PubMed  Google Scholar 

  27. Team RC (2014) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  28. Kramer A, Roth B, Muller G, Rudolph P, Klocker N (2004) Influence of the antiseptic agents polyhexanide and octenidine on FL cells and on healing of experimental superficial aseptic wounds in piglets. A double-blind, randomised, stratified, controlled, parallel-group study. Skin Pharmacol Physiol 17(3):141–146. doi:10.1159/000077241

    Article  CAS  PubMed  Google Scholar 

  29. Blackburn RS, Harvey A, Kettle LL, Payne JD, Russell SJ (2006) Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition. Langmuir 22(13):5636–5644. doi:10.1021/la053002b

    Article  CAS  PubMed  Google Scholar 

  30. Cooper GM (2000) Structure of the plasma membrane. The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland, MA

  31. King RJ, MacBeth MC (1981) Interaction of the lipid and protein components of pulmonary surfactant. Role of phosphatidylglycerol and calcium. Biochim Biophys Acta 647(2):159–168

    Article  CAS  PubMed  Google Scholar 

  32. Hermansson M, Hokynar K, Somerharju P (2011) Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 50(3):240–257. doi:10.1016/j.plipres.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Ma W, Silberberg SD, Priel Z (2002) Distinct axonemal processes underlie spontaneous and stimulated airway ciliary activity. J Gen Physiol 120(6):875–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhang L, Sanderson MJ (2003) Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP. J Physiol 546(Pt 3):733–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Badiali D, Corazziari E (1999) Use of low dose polyethylene glycol solutions in the treatment of functional constipation. Ital J Gastroenterol Hepatol 31(Suppl 3):S245–S248

    CAS  PubMed  Google Scholar 

  36. De Giorgio R, Cestari R, Corinaldesi R, Stanghellini V, Barbara G, Felicani C, Di Nardo G, Cucchiara S (2011) Use of macrogol 4000 in chronic constipation. Eur Rev Med Pharmacol Sci 15(8):960–966

    PubMed  Google Scholar 

  37. Gordon M, Naidoo K, Akobeng AK, Thomas AG (2012) Osmotic and stimulant laxatives for the management of childhood constipation. Cochrane Database Syst Rev 7:CD009118. doi:10.1002/14651858.CD009118.pub2

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Birk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birk, R., Aderhold, C., Stern-Sträter, J. et al. Polyhexanide-containing solution reduces ciliary beat frequency of human nasal epithelial cells in vitro. Eur Arch Otorhinolaryngol 272, 377–383 (2015). https://doi.org/10.1007/s00405-014-3112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3112-5

Keywords

Navigation