Skip to main content

Advertisement

Log in

The cost-effectiveness of bivalent, quadrivalent, and nine-valent HPV vaccination in Asia: a systematic review

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to systematically review the cost-effectiveness of HPV vaccination in Asia.

Methods

We performed a systematic review of papers indexed in PubMed, Scopus, and Web of Science covering the period from 1 January 2000 to 13 August 2020.

Results

Sixteen studies were included in the review. Half of them (8 studies) evaluated the cost-effectiveness of HPV vaccination in high-income countries and regions (HICs) while the other eight studies were set in low- and middle-income countries and regions (LMICs). In HICs, the implementation of bivalent, quadrivalent and nine-valent HPV vaccination was all shown to be cost-effective. Most studies (7/8) also showed that it was cost-effective to implement bivalent, quadrivalent, and nine-valent HPV vaccines in LMICs. However, one study concluded that it was not cost-effective to implement bivalent HPV vaccination in Thailand.

Conclusion

In general, the implementation of bivalent, quadrivalent and nine-valent HPV vaccination for adolescent girls was cost-effective in both high-income countries and regions and low- and middle-income countries and regions in Asia. Policy makers in HICs could consider expanding the target vaccinated population, while for LMICs it is essential to reduce HPV vaccine price to a level at which the implementation of HPV vaccination is cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All included studies available in major database.

Code availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. zzur Hausen H (1996) Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1288(2):F55-78. https://doi.org/10.1016/0304-419x(96)00020-0

    Article  PubMed  Google Scholar 

  3. World Health Organization [Internet]. Fact Sheets about human papillomavirus (HPV) and cervical cancer. https://www.who.int/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer. Accessed 9 Sept 2020

  4. Dochez C, Bogers JJ, Verhelst R, Rees H (2014) HPV vaccines to prevent cervical cancer and genital warts: an update. Vaccine 32(14):1595–1601. https://doi.org/10.1016/j.vaccine.2013.10.081

    Article  CAS  PubMed  Google Scholar 

  5. Giuliano AR, Nyitray AG, Kreimer AR, Pierce Campbell CM, Goodman MT, Sudenga SL, Franceschi S (2015) EUROGIN 2014 roadmap: differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection. Int J Cancer 136(12):2752–2760. https://doi.org/10.1002/ijc.29082

    Article  CAS  PubMed  Google Scholar 

  6. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14(2):467–475. https://doi.org/10.1158/1055-9965.Epi-04-0551

    Article  CAS  PubMed  Google Scholar 

  7. Castellsagué X (2008) Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110(3 Suppl 2):S4-7. https://doi.org/10.1016/j.ygyno.2008.07.045

    Article  PubMed  Google Scholar 

  8. Koutsky L (1997) Epidemiology of genital human papillomavirus infection. Am J Med 102(5a):3–8. https://doi.org/10.1016/s0002-9343(97)00177-0

    Article  CAS  PubMed  Google Scholar 

  9. Stanley M (2006) Immune responses to human papillomavirus. Vaccine 24(Suppl 1):S16-22. https://doi.org/10.1016/j.vaccine.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370(9590):890–907. https://doi.org/10.1016/s0140-6736(07)61416-0

    Article  CAS  PubMed  Google Scholar 

  11. World Health Organization (2017) Human papillomavirus vaccines: WHO position paper, May 2017-Recommendations. Vaccine 35(43):5753–5755. https://doi.org/10.1016/j.vaccine.2017.05.069

    Article  Google Scholar 

  12. Schiller JT, Castellsagué X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30 Suppl 5(05):F123-138. https://doi.org/10.1016/j.vaccine.2012.04.108

    Article  CAS  PubMed  Google Scholar 

  13. Drolet M, Bénard É, Boily MC, Ali H, Baandrup L, Bauer H, Brisson M (2015) Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 15(5):565–580. https://doi.org/10.1016/s1473-3099(14)71073-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Meijer CJ (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6):518–527. https://doi.org/10.1056/NEJMoa021641

    Article  PubMed  Google Scholar 

  15. Greer CE, Wheeler CM, Ladner MB, Beutner K, Coyne MY, Liang H, Ralston R (1995) Human papillomavirus (HPV) type distribution and serological response to HPV type 6 virus-like particles in patients with genital warts. J Clin Microbiol 33(8):2058–2063. https://doi.org/10.1128/jcm.33.8.2058-2063.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown DR, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Barr E (2009) The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J Infect Dis 199(7):926–935. https://doi.org/10.1086/597307

    Article  PubMed  Google Scholar 

  17. World Health Organization. Newsroom. https://www.who.int/news-room/detail/31-10-2019-major-milestone-reached-as-100-countries-have-introduced-hpv-vaccine-into-national-schedule. Accessed 9 2020

  18. PATH. https://path.azureedge.net/media/documents/Global_HPV_Vaccine_Intro_Overview_Slides_webversion_2020May.pdf. Accessed 8 2021

  19. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Loder E (2013) Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Value Health 16(2):e1-5. https://doi.org/10.1016/j.jval.2013.02.010

    Article  PubMed  Google Scholar 

  20. World Bank. World Bank Country and Lending Groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519. Accessed 9 September 2020

  21. Connelly LB, Le HN (2015) Cost-effectiveness of a bivalent human papillomavirus vaccination program in Japan. Sex Health 12(6):520–531. https://doi.org/10.1071/sh14241

    Article  PubMed  Google Scholar 

  22. Lee H, Hur S, Jang H, Lee IH, Sohn WY, Van Kriekinge G, Kim BG (2019) Cost-utility of a two-dose human papillomavirus vaccination programme added to cervical cancer screening compared with cervical cancer screening alone in Korea. Asian Pac J Cancer Prev 20(2):425–435. https://doi.org/10.31557/apjcp.2019.20.2.425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee VJ, Tay SK, Teoh YL, Tok MY (2011) Cost-effectiveness of different human papillomavirus vaccines in Singapore. BMC Public Health 11:203. https://doi.org/10.1186/1471-2458-11-203

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tay SK, Lee B-W, Sohn WY, Lee IH, Mathur G, Sanicas M, Van Kriekinge G (2018) Cost-effectiveness of two-dose human papillomavirus vaccination in Singapore. Singapore Med J 59(7):370–382. https://doi.org/10.11622/smedj.2017085

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang C-H, Cheng WF, Jiang J-H, You SL, Huang L-W, Hsieh J-Y, Lee C (2019) Cost-effectiveness analysis of human papillomavirus vaccination in adolescent girls in Taiwan. Asian Pac J Cancer Prev: APJCP 20(5):1377–1387 (Retrieved from <Go to ISI>://MEDLINE:31127896)

    Article  Google Scholar 

  26. Yamabe K, Singhal PK, Abe M, Dasbach EJ, Elbasha EH (2013) The cost-effectiveness analysis of a quadrivalent human papillomavirus vaccine (6/11/16/18) for females in Japan. Value Health Reg Issues 2(1):92–97. https://doi.org/10.1016/j.vhri.2013.02.001

    Article  PubMed  Google Scholar 

  27. Tay SK, Hsu TY, Shcheprov A, Walia A, Kulkarni AS (2017) The clinical and economic benefits of school-based quadrivalent HPV vaccination in Singapore. Int J Gynaecol Obstet 137(2):129–137. https://doi.org/10.1002/ijgo.12126

    Article  PubMed  Google Scholar 

  28. Tay SK, Hsu TY, Pavelyev A, Walia A, Kulkarni AS (2018) Clinical and economic impact of school-based nonavalent human papillomavirus vaccine on women in Singapore: a transmission dynamic mathematical model analysis. BJOG 125(4):478–486. https://doi.org/10.1111/1471-0528.15106

    Article  CAS  PubMed  Google Scholar 

  29. Chanthavilay P, Reinharz D, Mayxay M, Phongsavan K, Marsden DE, Moore L, White LJ (2016) The economic evaluation of human papillomavirus vaccination strategies against cervical cancer in women in Lao PDR: a mathematical modelling approach. BMC Health Serv Res 16(1):418. https://doi.org/10.1186/s12913-016-1662-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang Y, Ni W, Wu J (2019) Cost-effectiveness and value-based prices of the 9-valent human papillomavirus vaccine for the prevention of cervical cancer in China: an economic modelling analysis. BMJ Open 9(11):e031186. https://doi.org/10.1136/bmjopen-2019-031186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Praditsitthikorn N, Teerawattananon L, Tantivess S, Limwattananon S, Riewpaiboon A, Chichareon S, Tangcharoensathien V (2011) Economic evaluation of policy options for prevention and control of cervical cancer in Thailand. Pharmacoeconomics 29(9):781–806. https://doi.org/10.2165/11586560-000000000-00000

    Article  PubMed  Google Scholar 

  32. Zhang Q, Liu Y-J, Hu S-Y, Zhao F-H (2016) Estimating long-term clinical effectiveness and cost-effectiveness of HPV 16/18 vaccine in China. BMC Cancer. https://doi.org/10.1186/s12885-016-2893-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Anwari P, Debellut F, Vodicka E, Clark A, Farewar F, Zhwak ZA, Safi N (2020) Potential health impact and cost-effectiveness of bivalent human papillomavirus (HPV) vaccination in Afghanistan. Vaccine 38(6):1352–1362. https://doi.org/10.1016/j.vaccine.2019.12.013

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mahumud RA, Gow J, Alam K, Keramat SA, Hossain MG, Sultana M, Islam SMS (2020) Cost-effectiveness of the introduction of two-dose bi-valent (Cervarix) and quadrivalent (Gardasil) HPV vaccination for adolescent girls in Bangladesh. Vaccine 38(2):165–172. https://doi.org/10.1016/j.vaccine.2019.10.037

    Article  PubMed  Google Scholar 

  35. Kosen S, Andrijono A, Ocviyanti D, Indriatmi W (2017) The cost-effectiveness of quadrivalent human papillomavirus vaccination in Indonesia. Asian Pac J Cancer Prev 18(7):2011–2017. https://doi.org/10.22034/apjcp.2017.18.7.2011

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mo X, Tobe RG, Wang L, Liu X, Wu B, Luo H, Nakayama T (2017) Cost-effectiveness analysis of different types of human papillomavirus vaccination combined with a cervical cancer screening program in mainland China. BMC Infect Dis. https://doi.org/10.1186/s12879-017-2592-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Demarteau N, Morhason-Bello IO, Akinwunmi B, Adewole IF (2014) Modeling optimal cervical cancer prevention strategies in Nigeria. BMC Cancer 14:365. https://doi.org/10.1186/1471-2407-14-365

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aguilar IB, Mendoza LO, García O, Díaz I, Figueroa J, Duarte RM, Janusz CB (2015) Cost-effectiveness analysis of the introduction of the human papillomavirus vaccine in Honduras. Vaccine 33(Suppl 1):A167-173. https://doi.org/10.1016/j.vaccine.2014.12.067

    Article  PubMed  Google Scholar 

  39. Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, Castellsagué X (2016) Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health 4(7):e453-463. https://doi.org/10.1016/s2214-109x(16)30099-7

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

KZ: Protocol development, Data collection, Data analysis, and Manuscript writing. YT: Data analysis, Manuscript writing. XD: Manuscript editing. BOA: Manuscript editing. CZ: Manuscript editing. JH: Manuscript editing. WKM: Protocol development and Manuscript editing.

Corresponding author

Correspondence to Wai-kit Ming.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Tian, Y., Dong, X. et al. The cost-effectiveness of bivalent, quadrivalent, and nine-valent HPV vaccination in Asia: a systematic review. Arch Gynecol Obstet 306, 173–187 (2022). https://doi.org/10.1007/s00404-021-06309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06309-y

Keywords

Navigation