Skip to main content
Log in

A systematic review of toll-like receptors in endometriosis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Introduction

The pathogen-associated molecular patterns and the danger-associated molecular patterns are possibly responsible for the activation of the inflammatory process in endometriosis through the activation of toll-like receptors (TLRs).

Objective

The aim of this systematic review was to critically analyze the findings of published articles on TLRs in endometriosis.

Methods

The keywords used were “endometriosis” and “toll-like” and the search was performed in Pubmed, Scielo and Lilacs databases. This study followed the PRISMA guidelines and the risk of bias of articles was conducted by Newcastle–Ottawa scale (NOS).

Results

Overall, the studies analyzed in this review point toward an increased expression of TLRs two, four and nine in women with endometriosis. Among all TLRs, TLR4 was the most cited receptor.

Conclusion

Despite the evidence demonstrating elevated TLR levels in endometriosis, the relationship with the disease is still unclear and needs to be clarified in further studies about innate immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parasar P, Ozcan P, Terry KL (2017) Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. https://doi.org/10.1007/s13669-017-0187-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nisolle M, Donnez J (1997) Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. https://doi.org/10.1016/S0015-0282(97)00191-X

    Article  PubMed  Google Scholar 

  3. Santulli P, Tran C, Gayet V et al (2018) Oligo-anovulation is not a rarer feature in women with documented endometriosis. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2018.06.012

    Article  PubMed  Google Scholar 

  4. Khan KN, Fujishita A, Masumoto H et al (2016) Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur J Obstet Gynecol Reprod Biol. https://doi.org/10.1016/j.ejogrb.2016.01.040

    Article  PubMed  Google Scholar 

  5. Klemmt PA, Starzinski-Powitz A (2017) Molecular and cellular pathogenesis of endometriosis. Curr Women’s Health Rev. https://doi.org/10.2174/1573404813666170306163448

    Article  Google Scholar 

  6. Gou Y, Li X, Li P et al (2019) Estrogen receptor β upregulates CCL2 via NF-κB signaling in endometriotic stromal cells and recruits macrophages to promote the pathogenesis of endometriosis. Hum Reprod. https://doi.org/10.1093/humrep/dez019

    Article  PubMed  Google Scholar 

  7. Huhtinen K, DesaiStah̊le RM et al (2012) Endometrial and endometriotic concentrations of estrone and estradiol are determined by local metabolism rather than circulating levels. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2012-1154

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scutiero G, Iannone P, Bernardi G, et al (2017) Oxidative stress and endometriosis: a systematic review of the literature. Oxid Med Cell Longev 2017:1–7

  9. Podgaec S, Dias Junior JA, Chapron C et al (2010) Th1 and Th2 immune responses related to pelvic endometriosis. Rev Assoc Med Bras. https://doi.org/10.1590/s0104-42302010000100022

    Article  PubMed  Google Scholar 

  10. Podgaec S, Rizzo LV, Fernandes LFC et al (2012) CD4+CD25high FoxP3+cells increased in the peritoneal fluid of patients with endometriosis. Am J Reprod Immunol. https://doi.org/10.1111/j.1600-0897.2012.01173.x

    Article  PubMed  Google Scholar 

  11. Sourial S, Tempest N, Hapangama DK (2014) Theories on the pathogenesis of endometriosis. Int J Reprod Med. https://doi.org/10.1155/2014/179515

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bellelis P, Frediani Barbeiro D, Gueuvoghlanian-Silva BY et al (2019) Interleukin-15 and interleukin-7 are the major cytokines to maintain endometriosis. Gynecol Obstet Invest. https://doi.org/10.1159/000496607

    Article  PubMed  Google Scholar 

  13. Dull AM, Moga MA, Dimienescu OG et al (2019) Therapeutic approaches of resveratrol on endometriosis via anti-inflammatory and anti-angiogenic pathways. Molecules 24:667

    Article  CAS  Google Scholar 

  14. Khan KN, Fujishita A, Hiraki K et al (2018) Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol 17:125–133

    Article  CAS  Google Scholar 

  15. Trinchieri G, Sher A (2007) Cooperation of toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179–190

    Article  CAS  Google Scholar 

  16. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337

    Article  CAS  Google Scholar 

  17. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022

    Article  CAS  Google Scholar 

  18. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420

    Article  CAS  Google Scholar 

  19. Sharma D, Kanneganti TD (2016) The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol 213:617–629

    Article  CAS  Google Scholar 

  20. Bullon P, Navarro JM (2017) Inflammasome as a key pathogenic mechanism in endometriosis. Curr Drug Targets. https://doi.org/10.2174/1389450117666160709013850

    Article  PubMed  Google Scholar 

  21. Webster SJ, Goodall JC (2018) New concepts in chlamydia induced inflammasome responses. Microbes Infect. https://doi.org/10.1016/j.micinf.2017.11.011

    Article  PubMed  Google Scholar 

  22. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  Google Scholar 

  23. Kobayashi H, Higashiura Y, Shigetomi H, Kajihara H (2014) Pathogenesis of endometriosis: the role of initial infection and subsequent sterile inflammation (review). Mol Med Rep. https://doi.org/10.3892/mmr.2013.1755

    Article  PubMed  Google Scholar 

  24. Khan KN, Kitajima M, Hiraki K et al (2009) Toll-like receptors in innate immunity: role of bacterial endotoxin and toll-like receptor 4 in endometrium and endometriosis. Gynecol Obstet Invest 68:40–52

    Article  CAS  Google Scholar 

  25. Khan KN, Kitajima M, Inoue T et al (2013) Additive effects of inflammation and stress reaction on toll-like receptor 4-mediated growth of endometriotic stromal cells. Hum Reprod. https://doi.org/10.1093/humrep/det280

    Article  PubMed  Google Scholar 

  26. Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  PubMed  Google Scholar 

  27. Wells GA, Shea B, O’connell D et al (2014) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hosp Res Inst http://www.ohri.ca/programs/clinical_epidemiology/nosgen.pdf

  28. Malvezzi H, Marengo EB, Podgaec S, Piccinato CDA (2020) Endometriosis: current challenges in modeling a multifactorial disease of unknown etiology. J Transl Med 18:1–21

    Article  Google Scholar 

  29. Khan KN, Kitajima M, Imamura T et al (2008) Toll-like receptor 4-mediated growth of endometriosis by human heat-shock protein 70. Hum Reprod. https://doi.org/10.1093/humrep/den195

    Article  PubMed  Google Scholar 

  30. Khan KN, Kitajima M, Hiraki K et al (2010) Escherichia coli contamination of menstrual blood and effect of bacterial endotoxin on endometriosis. Fertil Steril 94:2860-2863.e3. https://doi.org/10.1016/j.fertnstert.2010.04.053

    Article  CAS  PubMed  Google Scholar 

  31. Luo XZ, ZhouTao WJY et al (2015) TLR4 activation promotes the secretion of IL-8 which enhances the invasion and proliferation of endometrial stromal cells in an autocrine manner via the FAK signal pathway. Am J Reprod Immunol. https://doi.org/10.1111/aji.12425

    Article  PubMed  Google Scholar 

  32. Allhorn S, Böing C, Koch AA et al (2008) TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod Biol Endocrinol. https://doi.org/10.1186/1477-7827-6-40

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hayashi C, Chishima F, Sugitani M et al (2013) Relationship between toll-like receptor-4 and mPGES-1 gene expression in local lesions of endometriosis patients. Am J Reprod Immunol. https://doi.org/10.1111/aji.12056

    Article  PubMed  Google Scholar 

  34. Yeo SG, Won YS, Lee HY et al (2013) Increased expression of pattern recognition receptors and nitric oxide synthase in patients with endometriosis. Int J Med Sci. https://doi.org/10.7150/ijms.5169

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sobstyl M, Niedźwiedzka-Rystwej P, Grywalska E et al (2020) Toll-like receptor 2 expression as a new hallmark of advanced endometriosis. Cells. https://doi.org/10.3390/cells9081813

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hernandes C, Gueuvoghlanian-Silva BY, Monnaka VU et al (2020) Regulatory T cells isolated from endometriotic peritoneal fluid express a different number of toll-like receptors. Einstein (Sao Paulo). https://doi.org/10.31744/einstein_journal/2020AO5294

    Article  Google Scholar 

  37. Kajihara H, Yamada Y, Kanayama S et al (2011) New insights into the pathophysiology of endometriosis: from chronic inflammation to danger signal. Gynecol Endocrinol 27:73–79

    Article  Google Scholar 

  38. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19:3–10

    Article  CAS  Google Scholar 

  39. González-Ramos R, Donnez J, Defrère S et al (2007) Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol Hum Reprod. https://doi.org/10.1093/molehr/gam033

    Article  PubMed  Google Scholar 

  40. Aggarwal BB (2004) Nuclear factor-κB: the enemy within. Cancer Cell 6:203–208

    Article  CAS  Google Scholar 

  41. Park M, Hong J (2016) Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. https://doi.org/10.3390/cells5020015

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lingappan K (2018) NF-κB in oxidative stress. Curr Opin Toxicol 7:81–86

    Article  Google Scholar 

  43. Lebovic DI, Chao VA, Martini J-F, Taylor RN (2001) IL-1β induction of RANTES (regulated upon activation, normal T cell expressed and secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-κB site in the proximal promoter. J Clin Endocrinol Metab 86:4759–4764. https://doi.org/10.1210/jcem.86.10.7890

    Article  CAS  PubMed  Google Scholar 

  44. Sakamoto Y, Harada T, Horie S et al (2003) Tumor necrosis factor-α-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-κB activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2002-020666

    Article  PubMed  Google Scholar 

  45. Iba Y, Harada T, Horie S et al (2004) Lipopolysaccharide-promoted proliferation of endometriotic stromal cells via induction of tumor necrosis factor α and interleukin-8 expression. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2004.04.038

    Article  PubMed  Google Scholar 

  46. Yamauchi N, Harada T, Taniguchi F et al (2004) Tumor necrosis factor-α induced the release of interleukin-6 from endometriotic stromal cells by the nuclear factor-κB and mitogen-activated protein kinase pathways. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2004.02.134

    Article  PubMed  Google Scholar 

  47. Horie S, Harada T, Mitsunari M et al (2005) Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappa B inactivation in endometriotic stromal cells. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2004.11.042

    Article  PubMed  Google Scholar 

  48. González-Ramos R, Van Langendonckt A, Defrre S et al (2010) Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2010.01.013

    Article  PubMed  Google Scholar 

  49. González-Ramos R, Defrère S, Devoto L (2012) Nuclear factor-kappa B: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril 98:520–528

    Article  Google Scholar 

  50. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z (2012) Imbalance in cytokines from interleukin-1 family—role in pathogenesis of endometriosis. Am J Reprod Immunol. https://doi.org/10.1111/j.1600-0897.2012.01147.x

    Article  PubMed  Google Scholar 

  51. Akoum A, Al-Akoum M, Lemay A et al (2008) Imbalance in the peritoneal levels of interleukin 1 and its decoy inhibitory receptor type II in endometriosis women with infertility and pelvic pain. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2007.06.019

    Article  PubMed  Google Scholar 

  52. Ejzenberg D (2007) Avaliação das concentrações das interleucinas 1-beta e 6 e da proteína amilóide A, no líquido peritoneal e no soro de pacientes com endometriose pélvica. Universidade de São Paulo 2007:1–119

  53. Gueuvoghlanian-Silva BY, Bellelis P, Barbeiro DF et al (2018) Treg and NK cells related cytokines are associated with deep rectosigmoid endometriosis and clinical symptoms related to the disease. J Reprod Immunol. https://doi.org/10.1016/j.jri.2018.02.003

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Contributions

BCA and SP contributed to conception and design of the systematic review. BCA conducted the literature search, title/abstract review, abstracted. BCA and SP conducted the quality-assessed the included studies. FM prepared the Fig. 3, reviewed, and edited the manuscript. BCA and SP contributed to writing and revising the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bruna Cestari de Azevedo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This is an observational study. The Research Ethics Committee at Hospital Israelita Albert Einstein–CEP/Einstein, has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, B.C., Mansur, F. & Podgaec, S. A systematic review of toll-like receptors in endometriosis. Arch Gynecol Obstet 304, 309–316 (2021). https://doi.org/10.1007/s00404-021-06075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06075-x

Keywords

Navigation