Skip to main content

Advertisement

Log in

First pregnancy risk factors and future gestational diabetes mellitus

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Gestational diabetes mellitus (GDM) affect about 17% of all pregnancies and is associated with significant short- and long-term health consequences for the mother and her offspring. Early diagnosis and prompt interventions may reduce these adverse outcomes. We aimed to identify first pregnancy characteristics as risk factors for GDM in subsequent pregnancy.

Materials and methods

A population-based nested case–control study was conducted in a large tertiary hospital. The study population included all women with two singleton consecutive pregnancies and deliveries, without GDM in the first pregnancy. Characteristics and complications of the first pregnancy were compared among cases and controls. A multivariable logistic regression model was used to study the association between pregnancy complications (in the first pregnancy) and GDM in the subsequent pregnancy, while adjusting for confounding variables.

Results

A total of 38,750 women were included in the study, of them 1.9% (n = 728) had GDM in their second pregnancy. Mothers with GDM in their second pregnancy were more likely to have the following first pregnancy complications: hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia. Results remained significant after adjustment for maternal age and inter-pregnancy interval. Having either one of the complications increased the risk for GDM by 2.33 (adjusted OR = 2.33; 95% CI 1.93–2.82) while a combination of two complications increased GDM risk by 5.38 (adjusted OR = 5.38; 95% CI 2.85–10.17).

Conclusions

First pregnancy without GDM complicated by hypertensive disorders, perinatal mortality, maternal obesity and fetal macrosomia was associated with an increased risk for GDM in the subsequent pregnancy. Women with these complications may benefit from early detection of GDM in their subsequent pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

GDM:

Gestational diabetes mellitus

References

  1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH (2014) Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract 103(2):176–185. https://doi.org/10.1016/j.diabres.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Egan AM, Dunne FP (2019) Optimal management of gestational diabetes. Br Med Bull 131(1):97–108. https://doi.org/10.1093/bmb/ldz025

    Article  PubMed  Google Scholar 

  3. Diabetes in pregnancy: management from preconception to the postnatal period–PubMed–NCBI. https://www.ncbi.nlm.nih.gov/pubmed/32212588. Accessed 5 May 2020.

  4. Zhang C, Rawal S, Chong YS (2016) Risk factors for gestational diabetes: is prevention possible? Diabetologia 59(7):1385–1390. https://doi.org/10.1007/s00125-016-3979-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bottalico JN (2007) Recurrent gestational diabetes: risk factors, diagnosis, management, and implications. Semin Perinatol 31(3):176–184. https://doi.org/10.1053/j.semperi.2007.03.006

    Article  PubMed  Google Scholar 

  6. Beharier O, Shoham-Vardi I, Pariente G et al (2015) Gestational diabetes mellitus is a significant risk factor for long-term maternal renal disease. J Clin Endocrinol Metab 100(4):1412–1416. https://doi.org/10.1210/jc.2014-4474

    Article  CAS  PubMed  Google Scholar 

  7. Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E (2013) An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart 99(15):1118–1121. https://doi.org/10.1136/heartjnl-2013-303945

    Article  PubMed  Google Scholar 

  8. Landon MB, Spong CY, Thom E et al (2009) A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 361(14):1339–1348. https://doi.org/10.1056/NEJMoa0902430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barchilon-Tiosano L, Sheiner E, Wainstock T, Sergienko R, Okby-Cronin R (2019) Long-term risk for maternal cardiovascular morbidities in twin pregnancies complicated with gestational diabetes mellitus–a retrospective cohort study†. J Matern Neonatal Med. https://doi.org/10.1080/14767058.2019.1670805

    Article  Google Scholar 

  10. Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E (2018) Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18 years of follow up. Acta Diabetol 55(10):1037–1042. https://doi.org/10.1007/s00592-018-1176-1

    Article  CAS  PubMed  Google Scholar 

  11. Shorer DT, Wainstock T, Sheiner E, Landau D, Pariente G (2019) Long-term endocrine outcome of small for gestational age infants born to mothers with and without gestational diabetes mellitus. Gynecol Endocrinol 35(11):1003–1009. https://doi.org/10.1080/09513590.2019.1616174

    Article  PubMed  Google Scholar 

  12. Fuchs O, Sheiner E, Meirovitz M, Davidson E, Sergienko R, Kessous R (2017) The association between a history of gestational diabetes mellitus and future risk for female malignancies. Arch Gynecol Obstet 295(3):731–736. https://doi.org/10.1007/s00404-016-4275-7

    Article  PubMed  Google Scholar 

  13. Kessous R, Wainstock T, Walfisch A, Sheiner E (2019) The risk for childhood malignancies in the offspring of mothers with previous gestational diabetes mellitus: a population-based cohort study. Eur J Cancer Prev 28(4):377–381. https://doi.org/10.1097/CEJ.0000000000000487

    Article  PubMed  Google Scholar 

  14. Abokaf H, Shoham-Vardi I, Sergienko R, Landau D, Sheiner E (2018) In utero exposure to gestational diabetes mellitus and long term endocrine morbidity of the offspring. Diabetes Res Clin Pract 144:231–235. https://doi.org/10.1016/j.diabres.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  15. Farahvar S, Walfisch A, Sheiner E (2019) Gestational diabetes risk factors and long-term consequences for both mother and offspring: a literature review. Expert Rev Endocrinol Metab 14(1):63–74. https://doi.org/10.1080/17446651.2018.1476135

    Article  CAS  PubMed  Google Scholar 

  16. Zamstein O, Sheiner E, Wainstock T, Landau D, Walfisch A (2018) Maternal gestational diabetes and long-term respiratory related hospitalizations of the offspring. Diabetes Res Clin Pract 140:200–207. https://doi.org/10.1016/j.diabres.2018.03.050

    Article  PubMed  Google Scholar 

  17. Beharier O, Sergienko R, Kessous R et al (2017) Gestational diabetes mellitus is a significant risk factor for long-term ophthalmic morbidity. Arch Gynecol Obstet 295(6):1477–1482. https://doi.org/10.1007/s00404-017-4362-4

    Article  PubMed  Google Scholar 

  18. Gillman MW, Oakey H, Baghurst PA, Volkmer RE, Robinson JS, Crowther CA (2010) Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care 33(5):964–968. https://doi.org/10.2337/dc09-1810

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baptiste-Roberts K, Nicholson WK, Wang NY, Brancati FL (2012) Gestational diabetes and subsequent growth patterns of offspring: the national collaborative perinatal project. Matern Child Health J 16(1):125–132. https://doi.org/10.1007/s10995-011-0756-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landon MB, Rice MM, Varner MW et al (2015) Mild gestational diabetes mellitus and long-term child health. Diabetes Care 38(3):445–452. https://doi.org/10.2337/dc14-2159

    Article  PubMed  Google Scholar 

  21. Alptekin H, Çizmecioäÿlu A, Işik H, Cengiz T, Yildiz M, Iyisoy MS (2016) Predicting gestational diabetes mellitus during the first trimester using anthropometric measurements and HOMA-IR. J Endocrinol Invest 39(5):577–583. https://doi.org/10.1007/s40618-015-0427-z

    Article  PubMed  Google Scholar 

  22. Kansu-Celik H, Ozgu-Erdinc AS, Kisa B, Findik RB, Yilmaz C, Tasci Y (2019) Prediction of gestational diabetes mellitus in the first trimester: comparison of maternal fetuin-A, N-terminal proatrial natriuretic peptide, high-sensitivity C-reactive protein, and fasting glucose levels. Arch Endocrinol Metab 63(2):121–127. https://doi.org/10.20945/2359-3997000000126

    Article  PubMed  Google Scholar 

  23. Mavreli D, Evangelinakis N, Papantoniou N, Kolialexi A (2020) Quantitative comparative proteomics reveals candidate biomarkers for the early prediction of gestational diabetes mellitus: a preliminary study. In Vivo 34(2):517–525. https://doi.org/10.21873/invivo.11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. American Diabetes Association (2018) 13. Management of diabetes in pregnancy: standards of medical care in diabetes-2018. Diabetes Care 41(1):S137–S143. https://doi.org/10.2337/dc18-S013

    Article  Google Scholar 

  25. Lee J, Ouh YT, Ahn KH et al (2017) Preeclampsia: a risk factor for gestational diabetes mellitus in subsequent pregnancy. PLoS ONE. https://doi.org/10.1371/journal.pone.0178150

    Article  PubMed  PubMed Central  Google Scholar 

  26. Russell C, Dodds L, Armson BA, Kephart G, Joseph KS (2008) Diabetes mellitus following gestational diabetes: role of subsequent pregnancy. BJOG An Int J Obstet Gynaecol 115(2):253–260. https://doi.org/10.1111/j.1471-0528.2007.01459.x

    Article  CAS  Google Scholar 

  27. Phipps EA, Thadhani R, Benzing T, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5):275–289. https://doi.org/10.1038/s41581-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brownfoot FC, Hastie R, Hannan NJ et al (2016) Metformin as a prevention and treatment for preeclampsia: Effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am J Obstet Gynecol 214(3):356.e1-356.e15. https://doi.org/10.1016/j.ajog.2015.12.019

    Article  CAS  Google Scholar 

  29. Cluver C, Walker SP, Mol BW et al (2019) A double blind, randomised, placebo-controlled trial to evaluate the efficacy of metformin to treat preterm pre-eclampsia (PI2 Trial): Study protocol. BMJ Open. https://doi.org/10.1136/bmjopen-2018-025809

    Article  PubMed  PubMed Central  Google Scholar 

  30. Han CS, Herrin MA, Pitruzzello MC et al (2015) Glucose and metformin modulate human first trimester trophoblast function: a model and potential therapy for diabetes-associated uteroplacental insufficiency. Am J Reprod Immunol 73(4):362–371. https://doi.org/10.1111/aji.12339

    Article  CAS  PubMed  Google Scholar 

  31. Romero R, Erez O, Hüttemann M et al (2017) Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 217(3):282–302. https://doi.org/10.1016/j.ajog.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herzig S, Shaw RJ (2018) AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  33. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37. https://doi.org/10.1016/j.ceb.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Plaks V, Rinkenberger J, Dai J et al (2013) Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proc Natl Acad Sci USA 110(27):11109–11114. https://doi.org/10.1073/pnas.1309561110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Waker CA, Albers RE, Pye RL et al (2017) AMPK knockdown in placental Labyrinthine Progenitor cells results in restriction of critical energy resources and terminal differentiation failure. Stem Cells Dev 26(11):808–817. https://doi.org/10.1089/scd.2016.0252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carey EAK, Albers RE, Doliboa SR et al (2014) AMPK knockdown in placental trophoblast cells results in altered morphology and function. Stem Cells Dev 23(23):2921–2930. https://doi.org/10.1089/scd.2014.0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaufman MR, Brown TL (2016) AMPK and Placental Progenitor cells. EXS 107:73–79. https://doi.org/10.1007/978-3-319-43589-3_4

    Article  CAS  PubMed  Google Scholar 

  38. Wu L, Huang XJ, Yang CH et al (2011) 5’-AMP-activated protein kinase (AMPK) regulates progesterone receptor transcriptional activity in breast cancer cells. Biochem Biophys Res Commun 416(1–2):172–177. https://doi.org/10.1016/j.bbrc.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  39. Smith BK, Steinberg GR (2017) AMP-Activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care 20(4):248–253. https://doi.org/10.1097/MCO.0000000000000380

    Article  CAS  PubMed  Google Scholar 

  40. Jeon S-M (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48(7):e245. https://doi.org/10.1038/emm.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585. https://doi.org/10.1007/s00125-017-4342-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966. https://doi.org/10.1016/j.cmet.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  43. Foretz M, Guigas B, Viollet B (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 15(10):569–589. https://doi.org/10.1038/s41574-019-0242-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

IY: project development, data analysis, manuscript writing. ES: project development, data analysis, manuscript editing. TW: project development, data analysis, statistical analysis, manuscript editing.

Corresponding author

Correspondence to Israel Yoles.

Ethics declarations

Conflicts of interests

None of the authors have any commercial association or other conflicts of interest regarding the manuscript.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

The study protocol was approved by the Institutional IRB and informed consent was exempt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoles, I., Sheiner, E. & Wainstock, T. First pregnancy risk factors and future gestational diabetes mellitus. Arch Gynecol Obstet 304, 929–934 (2021). https://doi.org/10.1007/s00404-021-06024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06024-8

Keywords

Navigation