Skip to main content

Advertisement

Log in

rhCSF3 accelerates the proliferation of human melanocytes in culture through binding CSF3R and the expression of CSF3R transcripts

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Melanogenic paracrine and autocrine cytokine networks have recently been discovered in vitro between melanocytes and other types of skin cells. Granulocyte colony-stimulating factor receptor (CSF3R) controls the survival, proliferation and differentiation of many kinds of cells, including neutrophils. To understand the function of CSF3R and recombinant human granulocyte colony-stimulating factor (rhCSF3) on melanocyte proliferation, this study compared the expression of CSF3R and the effects of rhCSF3 in primary human melanocytes, neutrophils and HEL 92.1.7 cells. The results show that CSF3R is localized in the cytoplasm and on cell membranes of melanocytes and neutrophils. The percentage of CSF3R+ melanocytes was higher than CSF3R+ HEL 92.1.7 cells, but was lower than CSF3R+ neutrophils. Both CSF3R mRNA and CSF3R protein levels in melanocytes were higher than in HEL 92.1.7 cells, but were lower than in neutrophils. Treatment with rhCSF3 increased the proliferation of human melanocytes, but not their tyrosinase activity. Transcripts of CSF3R in human melanocytes, M14, A375 melanoma and A431 squamous cell carcinoma cells were also detected. Expression of the CSF3R V3 transcript was lower in melanocytes than in M14, A375 melanoma and A431 squamous cell carcinoma cells. In conclusion, rhCSF3 can promote melanocyte proliferation through CSF3R without affecting tyrosinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aapro MS, Bohlius J, Cameron DA, Dal Lago L, Donnelly JP, Kearney N, Lyman GH, Pettengell R, Tjan-Heijnen VC, Walewski J, Weber DC, Zielinski C, European Organisation for Research and Treatment of Cancer (2011) 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer 47:8–32

    Article  CAS  PubMed  Google Scholar 

  2. Avalos BR (1996) Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood 88:761–777

    CAS  PubMed  Google Scholar 

  3. Basu S, Dunn A, Ward A (2002) G-CSF: function and modes of action (Review). Int J Mol Med 10:3–10

    CAS  PubMed  Google Scholar 

  4. Bennett CL, Djulbegovic B, Norris LB, Armitage JO (2013) Colony-stimulating factors for febrile neutropenia during cancer therapy. N Engl J Med 368:1131–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bernard T, Gale RE, Linch DC (1996) Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. Br J Haematol 93:527–533

    Article  CAS  PubMed  Google Scholar 

  6. Cook PW, Pittelkow MR, Shipley GD (1991) Growth factor-independent proliferation of normal human neonatal keratinocytes: production of autocrine- and paracrine-acting mitogenic factors. J Cell Physiol 146:277–289

    Article  CAS  PubMed  Google Scholar 

  7. de Koning JP, Schelen AM, Dong F, van Buitenen C, Burgering BM, Bos JL, Löwenberg B, Touw IP (1996) Specific involvement of tyrosine of human granulocyte colony-stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes. Blood 87:132–140

    PubMed  Google Scholar 

  8. Di Gregoli K, Johnson JL (2012) Role of colony-stimulating factors in atherosclerosis. Curr Opin Lipidol 23:412–421

    Article  PubMed  Google Scholar 

  9. Dong F, van Buitenen C, Pouwels K, Hoefsloot LH, Löwenberg B, Touw IP (1993) Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol 13:7774–7781

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Dong F, van Paassen M, van Buitenen C, Hoefsloot LH, Löwenberg B, Touw IP (1995) A point mutation in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene in a case of acute myeloid leukemia results in the overexpression of a novel G-CSF-R isoform. Blood 85:902–911

    CAS  PubMed  Google Scholar 

  11. Fukunaga R, Seto Y, Mizushima S, Nagata S (1990) Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA 87:8702–8706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gyanchandani R, Sano D, Ortega Alves MV, Klein JD, Knapick BA, Oh S, Myers JN, Kim S (2013) Interleukin-8 as a modulator of response to bevacizumab in preclinical models of head and neck squamous cell carcinoma. Oral Oncol 49:761–770

    Article  CAS  PubMed  Google Scholar 

  13. Hirobe T (2011) How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res 24:462–478

    Article  CAS  PubMed  Google Scholar 

  14. Hirobe T, Osawa M, Nishikawa S (2004) Hepatocyte growth factor controls the proliferation of cultured epidermal melanoblasts and melanocytes from newborn mice. Pigment Cell Res 17:51–61

    Article  CAS  PubMed  Google Scholar 

  15. Hirobe T, Shinpo T, Higuchi K, Sano T (2010) Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci 57:123–131

    Article  CAS  PubMed  Google Scholar 

  16. Hollenstein U, Homoncik M, Stohlawetz PJ, Marsik C, Sieder A, Eichler HG, Jilma B (2000) Endotoxin down-modulates granulocyte colony-stimulating factor receptor (CD114) on human neutrophils. J Infect Dis 182:343–346

    Article  CAS  PubMed  Google Scholar 

  17. Jung GD, Yang JY, Song ES, Par JW (2005) Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells. Exp Mol Med 33:131–135

    Article  Google Scholar 

  18. Khera S, Tiwari A, Srinivasan R, Gupta A, Luthra-Guptasarma M (2011) Expression of granulocyte colony stimulating factor and its receptor by retinal pigment epithelial cells: a role in maintaining differentiation-competent state. Curr Eye Res 36:469–480

    Article  CAS  PubMed  Google Scholar 

  19. Lei TC, Virador VM, Vieira WD, Hearing VJ (2002) A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro. Anal Biochem 305:260–268

    Article  CAS  PubMed  Google Scholar 

  20. Lu Y, Zhu WY, Tan C, Yu GH, Gu JX (2002) Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes. Pigment Cell Res 15:454–460

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95:3025–3031

    CAS  PubMed  Google Scholar 

  22. Marino VJ, Roguin LP (2008) The granulocyte colony stimulating factor (G-CSF) activates Jak/STAT and MAPK pathways in a trophoblastic cell line. J Cell Biochem 103:1512–1523

    Article  CAS  PubMed  Google Scholar 

  23. Ringden OTH, Le Blanc K, Remberger M (2005) Granulocyte and granulocyte-macrophage colony-stimulating factors in allografts: uses, misuses, misconceptions, and future applications. Exp Hematol 33:505–512

    Article  CAS  PubMed  Google Scholar 

  24. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    Article  CAS  PubMed  Google Scholar 

  25. Slominski A, Wortsman J (2000) Neuroendocrinology of the skin. Endocr Rev 21:457–487

    CAS  PubMed  Google Scholar 

  26. Slominski A, Zmijewski MA, Pawelek J (2012) l-tyrosine and l-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 25:14–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD (2012) Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol 212:v (vii, 1–115)

    PubMed Central  PubMed  Google Scholar 

  28. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J (2013) Key role of CRF in the skin stress response system. Endocr Rev 34:827–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Swope VB, Medrano EE, Smalara D, Abdel-Malek ZA (1995) Long-term pro1iferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-l, and basic fibroblast growth factor. Exp Cell Res 217:453–459

    Article  CAS  PubMed  Google Scholar 

  30. Tweardy DJ, Anderson K, Cannizzaro LA, Steinman RA, Croce CM, Huebner K (1992) Molecular cloning of cDNAs for the human granulocyte colony-stimulating factor receptor from HL-60 and mapping of the gene to chromosome region 1p32-34. Blood 79:1148–1154

    CAS  PubMed  Google Scholar 

  31. Yang X, Liu F, Xu Z, Chen C, Wu X, Li G, Li J (2005) Expression of granulocyte colony stimulating factor receptor in human colorectal cancer. Postgrad Med J 81:333–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant NO.81171517).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lu.

Additional information

Y. Lu and Z. Guo equally contributed to this manuscript and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Guo, Z., Zhou, MH. et al. rhCSF3 accelerates the proliferation of human melanocytes in culture through binding CSF3R and the expression of CSF3R transcripts. Arch Dermatol Res 307, 341–350 (2015). https://doi.org/10.1007/s00403-015-1545-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1545-3

Keywords

Navigation