Skip to main content

Advertisement

Log in

A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with Pseudomonas aeruginosa

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the antimicrobial activity and healing-promoting effect of topical photodynamic therapy (ALA-PDT) on chronic skin ulcers infected with Pseudomonas aeruginosa (PA). A total of 26 patients with chronic skin ulcers in lower limbs infected with PA were enrolled. The surface areas of the ulcers were treated with either δ-aminolevulinic acid (ALA)-mediated PDT (20 % ALA solution, 1.5 h incubation, 630 nm red light, 80 J/cm2) or red light alone, both once a week for two weeks. Before treatment, the wound areas and the bacteria levels in these two groups were comparable (p > 0.05). Results indicated that the bacteria levels in the skin ulcers of the light only group of 24 h post-treatment (3.4 × 107 ± 7.1 × 107 CFU/cm2) and pre-treatment (5.5 × 107 ± 1.6 × 108 CFU/cm2) were not significantly different. In contrast, the bacteria levels on the surfaces of the ulcers in the PDT group of 24 h post-treatment (6.3 × 105 ± 1.7 × 106 CFU/cm2) and pre-treatment (8.9 × 107 ± 1.7 × 108 CFU/cm2) were significantly different (p < 0.01). At seven days post treatment, the mean ulcer area in the red light group was reduced from 11.85 ± 6.83 to 7.8 ± 4.9 cm2 (p < 0.01), that of PDT group from 12.72 ± 8.58 to 3.4 ± 3.4 cm2 (p < 0.01). Better healing was seen in PDT group (p < 0.01). In conclusion, ALA-PDT is a potential modality to control PA infection and promote healing of chronic skin ulcers in lower limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52

    PubMed Central  PubMed  Google Scholar 

  2. Babilas P, Schreml S, Landthaler M, Szeimies RM (2010) Photodynamic therapy in dermatology: state-of-the-art. Photodermatol Photoimmunol Photomed 26(3):118–132

    Article  CAS  PubMed  Google Scholar 

  3. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    Article  PubMed  Google Scholar 

  4. Bohannon RW, Pfaller BA (1983) Documentation of wound surface area from tracing of wound perimeters. Clinical report on three techniques. Phys Ther 63:1622–1624

    CAS  PubMed  Google Scholar 

  5. Clayton TH, Harrison PV (2007) Photodynamic therapy for infected leg ulcers. Br J Dermatol 156(2):384–385

    Article  CAS  PubMed  Google Scholar 

  6. Cuzzell JZ (1993) The right way to culture a wound. Am J Nurs 93(5):48–50

    CAS  PubMed  Google Scholar 

  7. Darlenski R, Fluhr JW (2013) Photodynamic therapy in dermatology: past, present, and future. J Biomed Opt 18(6):061208

    Article  PubMed  Google Scholar 

  8. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3(3):225–231

    Article  PubMed  Google Scholar 

  9. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  Google Scholar 

  10. Huang L, Zhiyentayev T, Xuan Y, Azhibek D, Kharkwal GB, Hamblin MR (2011) Photodynamic inactivation of bacteria using polyethylenimine-chlorin(e6) conjugates: effect of polymer molecular weight, substitution ratio of chlorin(e6). Lasers Surg Med 43(4):313–323

    Article  PubMed Central  PubMed  Google Scholar 

  11. Jiang Y, Huang S, Fu X, Liu H, Ran X, Lu S, Hu D, Li Q, Zhang H, Li Y, Wang R, Xie T, Cheng B, Wang L, Liu Y, Ye X, Han C, Chen H (2011) Epidemiology of chronic cutaneous wounds in China. Wound Repair Regen 19(2):181–188

    Article  PubMed  Google Scholar 

  12. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43(7):755–767

    PubMed Central  PubMed  Google Scholar 

  13. Ki V, Rotstein C (2008) Bacterial skin and soft tissue infections in adults: a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can J Infect Dis Med Microbiol 19(2):173–184

    PubMed Central  PubMed  Google Scholar 

  14. Kirketerp-Møller K, Jensen PØ, Fazli M, Madsen KG, Pedersen J, Moser C, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46(8):2717–2722

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lazarus GS, Cooper DM, Knighton DR, Margol-is DJ, Pecoraro RE, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493

    Article  CAS  PubMed  Google Scholar 

  16. Lee CF, Lee CJ, Chen CT, Huang CT (2004) Delta-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. J Photochem Photobiol B 75(1–2):21–25

    Article  CAS  PubMed  Google Scholar 

  17. Maisch T (2009) A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem 9(8):974–983

    Article  CAS  PubMed  Google Scholar 

  18. Mills SJ, Farrar MD, Ashcroft GS, Griffiths CE, Hardman MJ, Rhodes LE (2014) Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-β3 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization. Br J Dermatol 171(1):55–62

    Article  CAS  PubMed  Google Scholar 

  19. Montero M, Sala M, Riu M, Belvis F, Salvado M, Grau S, Horcajada JP, Alvarez-Lerma F, Terradas R, Orozco-Levi M, Castells X, Knobel H (2010) Risk factors for multidrug-resistant Pseudomonas aeruginosa acquisition. Impact of antibiotic use in a double case-control study. Eur J Clin Microbiol Infect Dis 29(3):335–339

    Article  CAS  PubMed  Google Scholar 

  20. Morley S, Griffiths J, Philips G, Moseley H, O’Grady C, Mellish K, Lankester CL, Faris B, Young RJ, Brown SB, Rhodes LE (2013) Phase IIa randomized, placebo-controlled study of antimicrobial photodynamic therapy in bacterially colonized, chronic leg ulcers and diabetic foot ulcers: a new approach to antimicrobial therapy. Br J Dermatol 168(3):617–624

    Article  CAS  PubMed  Google Scholar 

  21. Mustoe TA, O’Shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117(7 Suppl):35S–41S

    Article  CAS  PubMed  Google Scholar 

  22. Panuncialman J, Falanga V (2010) Unusual causes of cutaneous ulceration. Surg Clin North Am 90(6):1161–1180

    Article  PubMed Central  PubMed  Google Scholar 

  23. Peplow PV, Chung TY, Baxter GD (2012) Photodynamic modulation of wound healing: a review of human and animal studies. Photomed Laser Surg 30(3):118–148

    Article  CAS  PubMed  Google Scholar 

  24. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sahu K, Sharma M, Bansal H, Dube A, Gupta PK (2013) Topical photodynamic treatment with poly-l-lysine-chlorin p6 conjugate improves wound healing by reducing hyperinflammatory response in Pseudomonas aeruginosa-infected wounds of mice. Lasers Med Sci 28(2):465–471

    Article  PubMed  Google Scholar 

  26. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P (2008) Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother 52(1):299–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Street CN, Gibbs A, Pedigo L, Andersen D, Loebel NG (2009) In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochem Photobiol 85(1):137–143

    Article  CAS  PubMed  Google Scholar 

  28. Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, Cavaleiro JA, Cunha A, Gomes NC, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 8(1):91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Uppal SK, Ram S, Kwatra B, Garg S, Gupta R (2007) Comparative evaluation of surface swab and quantitative full thickness wound biopsy culture in burn patients. Burns 33(4):460–463

    Article  PubMed  Google Scholar 

  30. Wardlaw JL, Sullivan TJ, Lux CN (2012) Austin FW (2012) Photodynamic therapy against common bacteria causing wound and skin infections. Vet J 192(3):374–377

    Article  CAS  PubMed  Google Scholar 

  31. Wildeboer D, Hill KE, Jeganathan F, Williams DW, Riddell AD, Price PE, Thomas DW, Stephens P, Abuknesha RA, Price RG (2012) Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. Eur J Clin Microbiol Infect Dis 31(9):2183–2189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC, grant number 81271760 and 81471703).

Conflict of interest

No conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Huang or Jinjin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Liu, B., Huang, Z. et al. A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with Pseudomonas aeruginosa . Arch Dermatol Res 307, 49–55 (2015). https://doi.org/10.1007/s00403-014-1520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1520-4

Keywords

Navigation