Skip to main content

Advertisement

Log in

The significant role of autophagy in the granular layer in normal skin differentiation and hair growth

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

As a major intracellular degradation system, autophagy contributes to the maintenance of skin keratinocyte homeostasis. However, the precise role of autophagy in skin differentiation has not been fully investigated. To clarify whether autophagy plays a role in skin differentiation and maturation, autophagy-related gene 7 (Atg7)-deficient mice were generated. Atg7-deficient mice cannot survive for more than 24 h after birth. Therefore, the skins of Atg7-deficient mice and wild-type mice (as a control) were grafted onto severe combined immunodeficient mice. The resulting morphological and pathological changes were monitored for 28 days. Histopathological examination revealed acanthosis, hyperkeratosis, and abnormal hair growth in the skin grafts from the Atg7-deficient mice. Immune-density analysis of the skin grafts revealed reduced immunostaining of keratinization-related proteins, including loricrin, filaggrin, and involucrin, in the skin grafts from the Atg7-deficient mice. Furthermore, quantitative RT-PCR and Western blot analyses revealed the reduced expression of these three keratinization-related proteins in the skin grafts from the Atg7-deficient mice. Morphometric analysis using electron microscopy further revealed a reduction in the number and diameter of the keratohyalin and trichohyalin granules in these skin grafts. The differences were maintained for at least 1 month after transplantation. These results show that autophagy has a significant role in epidermal keratinization and hair growth until a certain stage of maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aymard E, Barruche V, Naves T et al (2011) Autophagy in human keratinocytes: an early step of the differentiation? Exp Dermatol 20:263–268

    Article  CAS  PubMed  Google Scholar 

  2. Boehncke WH, Schön MP (2007) Animal models of psoriasis. Clin Dermatol 25:596–605

    Article  PubMed  Google Scholar 

  3. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Bio 6:328–340

    Article  CAS  Google Scholar 

  4. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  5. Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332

    Article  CAS  PubMed  Google Scholar 

  6. Eckhart L, Declercq W, Ban J et al (2000) Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115:1148–1151

    Article  CAS  PubMed  Google Scholar 

  7. Elias PM (2005) Statum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–300

    CAS  PubMed  Google Scholar 

  8. Fujishima Y, Nishiumi S, Masuda A et al (2011) Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-KappaB activation. Arch Biochem Biophys 506:223–235

    Article  CAS  PubMed  Google Scholar 

  9. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  10. Haruna K, Suga Y, Muramatsu S et al (2008) Differentiation-specific expression and localization of an autophagosomal marker protein (LC3) in human keratinocytes. J Dermatol Sci 52:213–215

    Article  CAS  PubMed  Google Scholar 

  11. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Juanes S, Epp N, Latzko S et al (2009) Development of an ichthyosiform phenotype in Alox12b-deficient mouse skin transplants. J Invest Dermatol 129:1429–1436

    Article  PubMed  Google Scholar 

  13. Jung HS, Chung KW, Won Kin J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Matab 8:318–324

    Article  CAS  Google Scholar 

  14. Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation- induced and constitutive autophagy in Atg-7 deficient mice. J Cell Biol 169:425–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  16. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy- deficient mice. Cell 131:1149–1163

    Article  CAS  PubMed  Google Scholar 

  17. Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  18. Lee HM, Shin DM, Yuk JM et al (2011) Autophagy negatively regulates keratinocyte inflammatory response via scaffolding protein p62/SQSTM1. J Immunol 186:1248–1258

    Article  CAS  PubMed  Google Scholar 

  19. Leung DY (2013) New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int. 62:151–161

    Article  CAS  PubMed  Google Scholar 

  20. Lippens S, Kockx M, Knaapen M et al (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7:1218–1224

    Article  CAS  PubMed  Google Scholar 

  21. Masiero E, Agatea L, Mammucari C et al (2009) Autophagy is required to maintain muscle mass. Cell Metab 10:507–515

    Article  CAS  PubMed  Google Scholar 

  22. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  23. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mizushima N, Yamamoto A, Matsui M et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Bio Cell 15:1101–1111

    Article  CAS  Google Scholar 

  26. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  27. Rendl M, Ban J, Mrass P et al (2002) Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J Invest Dermatol 119:1150–1155

    Article  CAS  PubMed  Google Scholar 

  28. Rossiter H, Konig U, Barresi C et al (2013) Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy. J Dermatol Sci 71:67–75

    Article  CAS  PubMed  Google Scholar 

  29. Shi JH, Hu DH, Zang ZF et al (2012) Reduced expression of microtubule-associated protein1 light chain 3 in hypertrophic scar. Arch Dermatol Res 304:209–215

    Article  CAS  PubMed  Google Scholar 

  30. Sukseree S, Mildner M, Rossiter H et al (2012) Autophagy in thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS ONE 7:e389

    Article  Google Scholar 

  31. Takamura A, Komatsu M, Hara T et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang RC, Levine B (2011) Calcipotriol induces autophagy in HeLa cells and keratinocytes. J Invest Dermatol 131:990–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Norihito Tada, Dr. Takatoshi Kuhara, and the staff of the Atopy Research Center for breeding the Atg7-deficient mice. We thank Mr. Atsushi Furuhata and Ms. Yuko Kojima of the Laboratory of Biomedical Imaging Research, and Dr. Masato Koike and Mr. Mitsutaka Yoshida of the Laboratory of Ultrastructure Research and the Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, for technical assistance. This work was supported, in part, by the “Research on Measures for Intractable Diseases” Project matching fund subsidy (H23-028) from the Ministry of Health, Labor, and Welfare, Japan (AT, SI), a Grant-in-aid for Scientific Research on Priority Areas (18076005 to MK, TU), and a Research Grant from the Takeda Science Foundation (TU).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigaku Ikeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshihara, N., Ueno, T., Takagi, A. et al. The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Arch Dermatol Res 307, 159–169 (2015). https://doi.org/10.1007/s00403-014-1508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1508-0

Keywords

Navigation