Skip to main content

Advertisement

Log in

Retrospective study comparing the accuracies of handheld infrared stereo camera and augmented reality-based navigation systems for total hip arthroplasty

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The use of portable navigation systems (PNS) in total hip arthroplasty (THA) has become increasingly prevalent, with second-generation PNS (sPNS) demonstrating superior accuracy in the lateral decubitus position compared to first-generation PNS. However, few studies have compared different types of sPNS. This study retrospectively compares the accuracy and clinical outcomes of two different types of sPNS instruments in patients undergoing THA.

Methods

A total of 158 eligible patients who underwent THA at a single institution between 2019 and 2022 were enrolled in the study, including 89 who used an accelerometer-based PNS with handheld infrared stereo cameras in the Naviswiss group (group N) and 69 who used an augmented reality (AR)-based PNS in the AR-Hip group (group A). Accuracy error, navigation error, clinical outcomes, and preparation time were compared between the two groups.

Results

Accuracy errors for Inclination were comparable between group N (3.5° ± 3.0°) and group A (3.5° ± 3.1°) (p = 0.92). Accuracy errors for anteversion were comparable between group N (4.1° ± 3.1°) and group A (4.5° ± 4.0°) (p = 0.57). The navigation errors for inclination (group N: 2.9° ± 2.7°, group A: 3.0° ± 3.2°) and anteversion (group N: 4.3° ± 3.5°, group A: 4.3° ± 4.1°) were comparable between the groups (p = 0.86 and 0.94, respectively). The preparation time was shorter in group A than in group N (p = 0.036). There were no significant differences in operative time (p = 0.255), intraoperative blood loss (p = 0.387), or complications (p = 0.248) between the two groups.

Conclusion

An Accelerometer-based PNS using handheld infrared stereo cameras and AR-based PNS provide similar accuracy during THA in the lateral decubitus position, with a mean error of 3°–4° for both inclination and anteversion, though the AR-based PNS required a shorter preparation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

ASIS:

Anterior superior iliac spines

FPP:

Functional pelvic plane

IMU:

Inertial measurement unit

PNS:

Portable navigation system

fPNS:

First-generation portable navigation system

RA:

Radiographic anteversion

RI:

Radiographic inclination

sPNS:

Second-generation portable navigation system

THA:

Total hip arthroplasty

ANCOVA:

Analysis of covariance

References

  1. Patil S, Bergula A, Chen PC, Colwell CW Jr, D’Lima DD (2003) Polyethylene wear and acetabular component orientation. J Bone Joint Surg Am 85-A Suppl 4:56–63. https://doi.org/10.2106/00004623-200300004-00007

    Article  PubMed  Google Scholar 

  2. Nishii T, Sugano N, Miki H, Koyama T, Takao M, Yoshikawa H (2004) Influence of component positions on dislocation: computed tomographic evaluations in a consecutive series of total hip arthroplasty. J Arthroplasty 19(2):162–166. https://doi.org/10.1016/j.arth.2003.09.005

    Article  PubMed  Google Scholar 

  3. Biedermann R, Tonin A, Krismer M, Rachbauer F, Eibl G, Stöckl B (2005) Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component. J Bone Joint Surg Br 87(6):762–769. https://doi.org/10.1302/0301-620X.87B6.14745

    Article  CAS  PubMed  Google Scholar 

  4. Maeda Y, Sugano N, Nakamura N, Hamawaki M (2015) The accuracy of a mechanical cup alignment guide in total hip arthroplasty (THA) through direct anterior and posterior approaches measured with CT-based navigation. J Arthroplasty 30(9):1561–1564. https://doi.org/10.1016/j.arth.2015.04.011

    Article  PubMed  Google Scholar 

  5. Sugano N (2013) Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg 5(1):1–9. https://doi.org/10.4055/cios.2013.5.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kamenaga T, Hayashi S, Hashimoto S, Matsumoto T, Takayama K, Fujishiro T, Hiranaka T, Niikura T, Kuroda R (2019) Accuracy of cup orientation and learning curve of the accelerometer-based portable navigation system for total hip arthroplasty in the supine position. J Orthop Surg (Hong Kong) 27(2):2309499019848871. https://doi.org/10.1177/2309499019848871

    Article  PubMed  Google Scholar 

  7. Hayashi S, Hashimoto S, Takayama K, Matsumoto T, Kamenaga T, Fujishiro T, Hiranaka T, Niikura T, Kuroda R (2020) Evaluation of the accuracy of acetabular cup orientation using the accelerometer-based portable navigation system. J Orthop Sci 25(4):612–617. https://doi.org/10.1016/j.jos.2019.09.012

    Article  PubMed  Google Scholar 

  8. Tetsunaga T, Yamada K, Tetsunaga T, Sanki T, Kawamura Y, Ozaki T (2020) An accelerometer-based navigation system provides acetabular cup orientation accuracy comparable to that of computed tomography-based navigation during total hip arthroplasty in the supine position. J Orthop Surg Res 15(1):147. https://doi.org/10.1186/s13018-020-01673-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasegawa M, Naito Y, Tone S, Wakabayashi H, Sudo A (2021) Accuracy of acetabular cup insertion in an anterolateral supine approach using an accelerometer-based portable navigation system. J Artif Organs 24(1):82–89. https://doi.org/10.1007/s10047-020-01206-8

    Article  PubMed  Google Scholar 

  10. Okamoto M, Kawasaki M, Okura T, Ochiai S, Yokoi H (2021) Comparison of accuracy of cup position using portable navigation versus alignment guide in total hip arthroplasty in supine position. Hip Int 31(4):492–499. https://doi.org/10.1177/1120700020908788

    Article  PubMed  Google Scholar 

  11. Anjiki K, Kamenaga T, Hayashi S, Hashimoto S, Kuroda Y, Nakano N, Fujishiro T, Hiranaka T, Niikura T, Kuroda R, Matsumoto T (2022) Effectiveness of an accelerometer-based portable navigation for intraoperative adjustment of leg length discrepancy in total hip arthroplasty in the supine position. J Orthop Sci 27(1):169–175. https://doi.org/10.1016/j.jos.2020.11.003

    Article  PubMed  Google Scholar 

  12. Tanino H, Nishida Y, Mitsutake R, Ito H (2020) Portable accelerometer-based navigation system for cup placement of total hip arthroplasty: a prospective, randomized, Controlled Study. J Arthroplasty 35(1):172–177. https://doi.org/10.1016/j.arth.2019.08.044

    Article  PubMed  Google Scholar 

  13. Asai H, Takegami Y, Seki T, Ishiguro N (2021) Pelvic tilt reduces the accuracy of acetabular component placement when using a portable navigation system: an in vitro study. Arthroplast Today 1(7):177–181. https://doi.org/10.1016/j.artd.2020.12.012

    Article  Google Scholar 

  14. Tanino H, Nishida Y, Mitsutake R, Ito H (2021) Accuracy of a portable accelerometer-based navigation system for cup placement and intraoperative leg length measurement in total hip arthroplasty: a cross-sectional study. BMC Musculoskelet Disord 22(1):299. https://doi.org/10.1186/s12891-021-04167-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tsukamoto M, Kawasaki M, Suzuki H, Fujitani T, Sakai A (2021) Proposal of accurate cup placement procedure during total hip arthroplasty based on pelvic tilt discrepancies in the lateral position. Sci Rep 11(1):13870. https://doi.org/10.1038/s41598-021-93418-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiyohara M, Hamai S, Shiomoto K, Harada S, Harada T, Motomura G, Ikemura S, Fujii M, Kawahara S, Nakashima Y (2022) Does accelerometer-based portable navigation provide more accurate and precise cup orientation without prosthetic impingement than conventional total hip arthroplasty? A randomized controlled study. Int J Comput Assist Radiol Surg 17(6):1007–1015. https://doi.org/10.1007/s11548-022-02592-5

    Article  PubMed  Google Scholar 

  17. Kurosaka K, Ogawa H, Hirasawa N, Saito M, Nakayama T, Tsukada S (2023) Does augmented reality-based portable navigation improve the accuracy of cup placement in THA compared with accelerometer-based portable navigation? A randomized controlled trial. Clin Orthop Relat Res 481(8):1515–1523. https://doi.org/10.1097/CORR.0000000000002602

    Article  PubMed  Google Scholar 

  18. Tsukada S, Ogawa H, Hirasawa N, Nishino M, Aoyama H, Kurosaka K (2022) Augmented reality- vs accelerometer-based portable navigation system to improve the accuracy of acetabular cup placement during total hip arthroplasty in the lateral decubitus position. J Arthroplasty 37(3):488–494. https://doi.org/10.1016/j.arth.2021.11.004

    Article  PubMed  Google Scholar 

  19. Tanino H, Mitsutake R, Takagi K, Ito H (2023) Does a commercially available augmented reality-based portable hip navigation system improve cup positioning during THA compared with the conventional technique? A randomized controlled study. Clin Orthop Relat Res. https://doi.org/10.1097/CORR.0000000000002819

    Article  PubMed  Google Scholar 

  20. Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75(2):228–232. https://doi.org/10.1302/0301-620X.75B2.8444942

    Article  CAS  PubMed  Google Scholar 

  21. Ektas N, Scholes C, Ruiz AM, Ireland J (2020) Validity of intraoperative imageless navigation (Naviswiss) for component positioning accuracy in primary total hip arthroplasty: protocol for a prospective observational cohort study in a single-surgeon practice. BMJ Open 10(10):e037126. https://doi.org/10.1136/bmjopen-2020-037126

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hasegawa M, Naito Y, Tone S, Sudo A (2022) Accuracy of a novel accelerometer-based navigation (Naviswiss) for total hip arthroplasty in the supine position. BMC Musculoskelet Disord 23(1):537. https://doi.org/10.1186/s12891-022-05495-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ohyama Y, Sugama R, Kim Y, Ohta Y, Minoda Y, Nakamura H (2023) A new accelerometer-based portable navigation system provides high accuracy of acetabular cup placement in total hip arthroplasty in both the lateral decubitus and supine positions. Arch Orthop Trauma Surg 143(7):4473–4480. https://doi.org/10.1007/s00402-022-04675-z

    Article  PubMed  Google Scholar 

  24. Ong CB, Chiu YF, Premkumar A, Gonzalez Della Valle A (2023) Use of a novel imageless navigation system reduced fluoroscopy exposure and improved acetabular positioning in anterior approach total hip arthroplasty: a case-control study. Arch Orthop Trauma Surg 143(5):2739–2745. https://doi.org/10.1007/s00402-022-04520-3

    Article  PubMed  Google Scholar 

  25. Ogawa H, Hasegawa S, Tsukada S, Matsubara M (2018) A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty. J Arthroplasty 33(6):1833–1837. https://doi.org/10.1016/j.arth.2018.01.067

    Article  PubMed  Google Scholar 

  26. Ogawa H, Kurosaka K, Sato A, Hirasawa N, Matsubara M, Tsukada S (2020) Does an augmented reality-based portable navigation system improve the accuracy of acetabular component orientation during THA? A randomized controlled trial. Clin Orthop Relat Res 478(5):935–943. https://doi.org/10.1097/CORR.0000000000001083

    Article  PubMed  Google Scholar 

  27. Fujita M, Hayashi S, Kuroda Y, Nakano N, Maeda T, Matsushita T, Matsumoto T, Kuroda R (2023) Accuracy comparison of cup positioning during total hip arthroplasty using Hip Align and AR-Hip in the supine position. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-023-04975-y

    Article  PubMed  Google Scholar 

  28. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60(2):217–220

    Article  CAS  PubMed  Google Scholar 

  29. Zhu J, Wan Z, Dorr LD (2010) Quantification of pelvic tilt in total hip arthroplasty. Clin Orthop Relat Res 468(2):571–575. https://doi.org/10.1007/s11999-009-1064-7

    Article  PubMed  Google Scholar 

  30. Grammatopoulos G, Pandit HG, da Assunção R, Taylor A, McLardy-Smith P, De Smet KA, Murray DW, Gill HS (2014) Pelvic position and movement during hip replacement. Bone Joint J 96-B(7):876–83. https://doi.org/10.1302/0301-620X.96B7.32107

    Article  CAS  PubMed  Google Scholar 

  31. Kanazawa M, Nakashima Y, Ohishi M, Hamai S, Motomura G, Yamamoto T, Fukushi J, Ushijima T, Hara D, Iwamoto Y (2016) Pelvic tilt and movement during total hip arthroplasty in the lateral decubitus position. Mod Rheumatol 26(3):435–440. https://doi.org/10.3109/14397595.2015.1092914

    Article  PubMed  Google Scholar 

  32. Iwakiri K, Kobayashi A, Ohta Y, Takaoka K (2017) Efficacy of the anatomical-pelvic-plane positioner in total hip arthroplasty in the lateral decubitus position. J Arthroplasty 32(5):1520–1524. https://doi.org/10.1016/j.arth.2016.11.048

    Article  PubMed  Google Scholar 

  33. Carcangiu A, D’Arrigo C, Topa D, Alonzo R, Speranza A, De Sanctis S, Ferretti A (2011) Reliability of cup position in navigated THA in the lateral decubitus position using the “flip technique.” Hip Int 21(6):700–705. https://doi.org/10.5301/HIP.2011.8860

    Article  PubMed  Google Scholar 

  34. Danoff JR, Bobman JT, Cunn G, Murtaugh T, Gorroochurn P, Geller JA, Macaulay W (2016) Redefining the acetabular component safe zone for posterior approach total hip arthroplasty. J Arthroplasty 31(2):506–511. https://doi.org/10.1016/j.arth.2015.09.010

    Article  PubMed  Google Scholar 

  35. Harada S, Hamai S, Motomura G, Ikemura S, Fujii M, Kawahara S, Sato T, Hara D, Nakashima Y (2022) Evaluation of optimal implant alignment in total hip arthroplasty based on postoperative range of motion simulation. Clin Biomech (Bristol, Avon) 92:105555. https://doi.org/10.1016/j.clinbiomech.2021.105555

    Article  PubMed  Google Scholar 

  36. Nishihara S, Sugano N, Nishii T, Ohzono K, Yoshikawa H (2003) Measurements of pelvic flexion angle using three-dimensional computed tomography. Clin Orthop Relat Res 411:140–151. https://doi.org/10.1097/01.blo.0000069891.31220.fd

    Article  Google Scholar 

  37. Dorr LD, Callaghan JJ (2019) Death of the Lewinnek “Safe Zone.” J Arthroplasty 34(1):1–2. https://doi.org/10.1016/j.arth.2018.10.035

    Article  PubMed  Google Scholar 

  38. Ike H, Dorr LD, Trasolini N, Stefl M, McKnight B, Heckmann N (2018) Spine-pelvis-hip relationship in the functioning of a total hip replacement. J Bone Joint Surg Am 100(18):1606–1615. https://doi.org/10.2106/JBJS.17.00403

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following people for their contributions: Hiroki Iida, Hiroto Funahashi, Yuto Ozawa, Hiroaki Ido, Takamune Asamoto and Keiji Otaka.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript, and all authors agree with the content of the manuscript.

Corresponding author

Correspondence to Yasuhiko Takegami.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The study was approved by the institutional review board, and it conforms to the provisions of the Declaration of Helsinki.

Consent to publish

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Takegami, Y., Osawa, Y. et al. Retrospective study comparing the accuracies of handheld infrared stereo camera and augmented reality-based navigation systems for total hip arthroplasty. Arch Orthop Trauma Surg (2024). https://doi.org/10.1007/s00402-024-05330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00402-024-05330-5

Keywords

Navigation