Skip to main content
Log in

Severe genu varus deformity does not affect enhanced recovery after surgery total knee arthroplasty outcomes

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Enhanced recovery after surgery (ERAS) has been increasingly adopted in orthopaedic surgery. Although not an exclusion criterion, patients undergoing total knee arthroplasty (TKA) with preoperative severe varus deformity may be less likely to be enrolled for ERAS. This study aimed to compare the success of ERAS TKA between patients with severe preoperative varus deformities ( 15° varus) and the control group (< 15° varus to 14° valgus). Our secondary aim was to compare postoperative complications and functional outcomes between the two groups.

Materials & methods

310 TKAs performed from August 2019 to February 2021 were analyzed with a follow-up of 6 months postoperatively. The primary outcome, ERAS TKA success, was defined as length of hospital stay of < 24 h. Other parameters included 30-day postoperative complications and clinical outcomes such as the original Oxford Knee Score (OKS), the Knee Society Knee (KSKS) and Function Score (KSFS), Visual Analog Scale for Pain (VAS-P), 36-Item Short-Form Health Survey (SF-36) Physical Component Summary (PCS) and SF-36 Mental Component Summary (MCS).

Results

There were 119 patients in the severe deformity group and 191 patients in the control group. There were no significant differences in ERAS success between the severe deformity group and control group, with both groups achieving similarly high rates (> 90%) of ERAS success. There were also no differences in 30-day postoperative complications and 6-month postoperative clinical outcomes.

Conclusion

Patients with severe preoperative varus deformity undergoing ERAS TKA achieved high ERAS success rates (> 90%). Genu varum is not a contraindication for ERAS TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A et al (2012) Knee Replace Lancet 379:1331–1340. https://doi.org/10.1016/S0140-6736(11)60752-6

    Article  PubMed  Google Scholar 

  2. Palazzuolo M, Antoniadis A, Mahlouly J, Wegrzyn J (2021) Total knee arthroplasty improves the quality-adjusted life years in patients who exceeded their estimated life expectancy. Int Orthop 45:635–641. https://doi.org/10.1007/s00264-020-04917-y

    Article  PubMed  Google Scholar 

  3. Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S (2017) Projected increase in total knee arthroplasty in the United States - an alternative projection model. Osteoarthritis Cartilage 25:1797–1803. https://doi.org/10.1016/j.joca.2017.07.022

    Article  CAS  PubMed  Google Scholar 

  4. Klug A, Gramlich Y, Rudert M, Drees P, Hoffmann R, Weißenberger M et al (2021) The projected volume of primary and revision total knee arthroplasty will place an immense burden on future health care systems over the next 30 years. Knee Surg Sports Traumatol Arthrosc 29:3287–3298. https://doi.org/10.1007/s00167-020-06154-7

    Article  PubMed  Google Scholar 

  5. Kehlet H (1997) Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 78:606–617. https://doi.org/10.1093/bja/78.5.606

    Article  CAS  PubMed  Google Scholar 

  6. Soffin EM, YaDeau JT (2016) Enhanced recovery after surgery for primary hip and knee arthroplasty: a review of the evidence. Br J Anaesth 117:iii62–72. https://doi.org/10.1093/bja/aew362

    Article  CAS  PubMed  Google Scholar 

  7. Deng Q-F, Gu H-Y, Peng W-Y, Zhang Q, Huang Z-D, Zhang C et al (2018) Impact of enhanced recovery after surgery on postoperative recovery after joint arthroplasty: results from a systematic review and meta-analysis. Postgrad Med J 94:678–693. https://doi.org/10.1136/postgradmedj-2018-136166

    Article  PubMed  Google Scholar 

  8. Salamanna F, Contartese D, Brogini S, Visani A, Martikos K, Griffoni C et al (2022) Key Components, current practice and clinical outcomes of ERAS Programs in patients undergoing orthopedic surgery: a systematic review. J Clin Med 11:4222. https://doi.org/10.3390/jcm11144222

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaye AD, Urman RD, Cornett EM, Hart BM, Chami A, Gayle JA et al (2019) Enhanced recovery pathways in orthopedic surgery. J Anaesthesiol Clin Pharmacol 35:S35–S39. https://doi.org/10.4103/joacp.JOACP_35_18

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hirschmann MT, Kort N, Kopf S, Becker R (2017) Fast track and outpatient surgery in total knee arthroplasty: beneficial for patients, doctors and hospitals. Knee Surg Sports Traumatol Arthrosc 25:2657–2658. https://doi.org/10.1007/s00167-017-4660-1

    Article  PubMed  Google Scholar 

  11. Morrell AT, Layon DR, Scott MJ, Kates SL, Golladay GJ, Patel NK (2021) Enhanced recovery after primary total hip and knee arthroplasty: a systematic review. J Bone Joint Surg Am 103:1938–1947. https://doi.org/10.2106/JBJS.20.02169

    Article  PubMed  Google Scholar 

  12. Zhu S, Qian W, Jiang C, Ye C, Chen X (2017) Enhanced recovery after surgery for hip and knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J 93:736–742. https://doi.org/10.1136/postgradmedj-2017-134991

    Article  PubMed  Google Scholar 

  13. Hu Z-C, He L-J, Chen D, Li X-B, Feng Z-H, Fu C-W et al (2019) An enhanced recovery after surgery program in orthopedic surgery: a systematic review and meta-analysis. J Orthop Surg Res 14:77. https://doi.org/10.1186/s13018-019-1116-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frassanito L, Vergari A, Nestorini R, Cerulli G, Placella G, Pace V et al (2020) Enhanced recovery after surgery (ERAS) in hip and knee replacement surgery: description of a multidisciplinary program to improve management of the patients undergoing major orthopedic surgery. Musculoskelet Surg 104:87–92. https://doi.org/10.1007/s12306-019-00603-4

    Article  CAS  PubMed  Google Scholar 

  15. Jiang H-H, Jian X-F, Shangguan Y-F, Qing J, Chen L-B (2019) Effects of enhanced recovery after surgery in total knee arthroplasty for patients older Than 65 years. Orthop Surg 11:229–235. https://doi.org/10.1111/os.12441

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ripollés-Melchor J, Abad-Motos A, Díez-Remesal Y, Aseguinolaza-Pagola M, Padin-Barreiro L, Sánchez-Martín R et al (2020) Association between Use of enhanced recovery after surgery protocol and postoperative complications in total hip and knee arthroplasty in the postoperative outcomes within enhanced recovery after surgery protocol in Elective Total hip and knee arthroplasty study (POWER2). JAMA Surg 155:e196024. https://doi.org/10.1001/jamasurg.2019.6024

    Article  PubMed  PubMed Central  Google Scholar 

  17. Auyong DB, Allen CJ, Pahang JA, Clabeaux JJ, MacDonald KM, Hanson NA (2015) Reduced length of hospitalization in primary total knee arthroplasty patients using an updated enhanced recovery after orthopedic surgery (ERAS) pathway. J Arthroplasty 30:1705–1709. https://doi.org/10.1016/j.arth.2015.05.007

    Article  PubMed  Google Scholar 

  18. Cheung A, Fu H, Cheung MH, Chan WKV, Chan PK, Yan CH et al (2020) How well do elderly patients do after total knee arthroplasty in the era of fast-track. Surgery? Arthroplasty 2:16. https://doi.org/10.1186/s42836-020-00037-5

    Article  PubMed  Google Scholar 

  19. den Hertog A, Gliesche K, Timm J, Mühlbauer B, Zebrowski S (2012) Pathway-controlled fast-track rehabilitation after total knee arthroplasty: a randomized prospective clinical study evaluating the recovery pattern, drug consumption, and length of stay. Arch Orthop Trauma Surg 132:1153–1163. https://doi.org/10.1007/s00402-012-1528-1

    Article  Google Scholar 

  20. Larsen K, Hansen TB, Thomsen PB, Christiansen T, Søballe K (2009) Cost-effectiveness of accelerated perioperative care and rehabilitation after total hip and knee arthroplasty. J Bone Joint Surg Am 91:761–772. https://doi.org/10.2106/JBJS.G.01472

    Article  PubMed  Google Scholar 

  21. Hardy A, Courgeon M, Pellei K, Desmeules F, Loubert C, Vendittoli P-A (2022) Improved clinical outcomes of outpatient enhanced recovery hip and knee replacements in comparison to standard inpatient procedures: a study of patients who experienced both. Orthop Traumatol Surg Res 103236. https://doi.org/10.1016/j.otsr.2022.103236

  22. Kort NP, Bemelmans YFL, van der Kuy PHM, Jansen J, Schotanus MGM (2017) Patient selection criteria for outpatient joint arthroplasty. Knee Surg Sports Traumatol Arthrosc 25:2668–2675. https://doi.org/10.1007/s00167-016-4140-z

    Article  PubMed  Google Scholar 

  23. Meneghini RM, Ziemba-Davis M, Ishmael MK, Kuzma AL, Caccavallo P (2017) Safe selection of Outpatient Joint Arthroplasty patients with Medical Risk Stratification: the Outpatient Arthroplasty Risk Assessment score. J Arthroplasty 32:2325–2331. https://doi.org/10.1016/j.arth.2017.03.004

    Article  PubMed  Google Scholar 

  24. Ziemba-Davis M, Caccavallo P, Meneghini RM (2019) Outpatient joint arthroplasty-patient selection: update on the Outpatient Arthroplasty Risk Assessment score. J Arthroplasty 34:S40–S43. https://doi.org/10.1016/j.arth.2019.01.007

    Article  PubMed  Google Scholar 

  25. Engh GA (2003) The difficult knee: severe varus and valgus. Clin Orthop Relat Res 58–63. https://doi.org/10.1097/01.blo.0000092987.12414.fc

  26. Kim MW, Koh IJ, Kim JH, Jung JJ, In Y (2015) Efficacy and safety of a Novel three-step medial release technique in Varus total knee arthroplasty. J Arthroplasty 30:1542–1547. https://doi.org/10.1016/j.arth.2015.03.037

    Article  PubMed  Google Scholar 

  27. Rossi R, Cottino U, Bruzzone M, Dettoni F, Bonasia DE, Rosso F (2019) Total knee arthroplasty in the varus knee: tips and tricks. Int Orthop 43:151–158. https://doi.org/10.1007/s00264-018-4116-3

    Article  PubMed  Google Scholar 

  28. Grosu I, Lavand’homme P, Thienpont E (2014) Pain after knee arthroplasty: an unresolved issue. Knee Surg Sports Traumatol Arthrosc 22:1744–1758. https://doi.org/10.1007/s00167-013-2750-2

    Article  PubMed  Google Scholar 

  29. Husted H, Lunn TH, Troelsen A, Gaarn-Larsen L, Kristensen BB, Kehlet H (2011) Why still in hospital after fast-track hip and knee arthroplasty? Acta Orthop 82:679–684. https://doi.org/10.3109/17453674.2011.636682

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA (2014) Mechanical, anatomical, and Kinematic Axis in TKA: concepts and practical applications. Curr Rev Musculoskelet Med 7:89–95. https://doi.org/10.1007/s12178-014-9218-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res :13–14

  32. Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br 80:63–69. https://doi.org/10.1302/0301-620x.80b1.7859

    Article  CAS  PubMed  Google Scholar 

  33. Ware JE, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. conceptual framework and item selection. Med Care 30:473–483

    Article  PubMed  Google Scholar 

  34. Delgado DA, Lambert BS, Boutris N, McCulloch PC, Robbins AB, Moreno MR et al (2018) Validation of Digital Visual Analog Scale Pain Scoring with a traditional paper-based Visual Analog Scale in adults. J Am Acad Orthop Surg Glob Res Rev 2:e088. https://doi.org/10.5435/JAAOSGlobal-D-17-00088

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang S, Huang Q, Xie J, Xu B, Cao G, Pei F (2018) Factors influencing postoperative length of stay in an enhanced recovery after surgery program for primary total knee arthroplasty. J Orthop Surg Res 13:29. https://doi.org/10.1186/s13018-018-0729-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ong P-H, Pua Y-H (2013) A prediction model for length of stay after total and unicompartmental knee replacement. Bone Joint J 95–B:1490–1496. https://doi.org/10.1302/0301-620X.95B11.31193

    Article  PubMed  Google Scholar 

  37. Wei B, Tang C, Li X, Lin R, Han L, Zheng S et al (2021) Enhanced recovery after surgery protocols in total knee arthroplasty via midvastus approach: a randomized controlled trial. BMC Musculoskelet Disord 22:856. https://doi.org/10.1186/s12891-021-04731-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. McDonald DA, Siegmeth R, Deakin AH, Kinninmonth AWG, Scott NB (2012) An enhanced recovery programme for primary total knee arthroplasty in the United Kingdom–follow up at one year. Knee 19:525–529. https://doi.org/10.1016/j.knee.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  39. Picart B, Lecoeur B, Rochcongar G, Dunet J, Pégoix M, Hulet C (2021) Implementation and results of an enhanced recovery (fast-track) program in total knee replacement patients at a French university hospital. Orthop Traumatol Surg Res 107:102851. https://doi.org/10.1016/j.otsr.2021.102851

    Article  PubMed  Google Scholar 

  40. Jones EL, Wainwright TW, Foster JD, Smith JRA, Middleton RG, Francis NK (2014) A systematic review of patient reported outcomes and patient experience in enhanced recovery after orthopaedic surgery. Ann R Coll Surg Engl 96:89–94. https://doi.org/10.1308/003588414X13824511649571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Husted H, Hansen HC, Holm G, Bach-Dal C, Rud K, Andersen KL et al (2010) What determines length of stay after total hip and knee arthroplasty? A nationwide study in Denmark. Arch Orthop Trauma Surg 130:263–268. https://doi.org/10.1007/s00402-009-0940-7

    Article  PubMed  Google Scholar 

  42. Lee B-S, Lee S-J, Kim J-M, Lee D-H, Cha E-J, Bin S-I (2011) No impact of severe varus deformity on clinical outcome after posterior stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:960–966. https://doi.org/10.1007/s00167-010-1316-9

    Article  PubMed  Google Scholar 

  43. Liu H-C, Kuo F-C, Huang C-C, Wang J-W (2015) Mini-midvastus total knee arthroplasty in patients with severe varus deformity. Orthopedics 38:e112–117. https://doi.org/10.3928/01477447-20150204-58

    Article  PubMed  Google Scholar 

  44. Ritter MA, Faris GW, Faris PM, Davis KE (2004) Total knee arthroplasty in patients with angular varus or valgus deformities of > or = 20 degrees. J Arthroplasty 19:862–866. https://doi.org/10.1016/j.arth.2004.03.009

    Article  PubMed  Google Scholar 

  45. Karachalios T, Sarangi PP, Newman JH (1994) Severe varus and valgus deformities treated by total knee arthroplasty. J Bone Joint Surg Br 76:938–942

    Article  CAS  PubMed  Google Scholar 

  46. Mullaji AB, Padmanabhan V, Jindal G (2005) Total knee arthroplasty for profound varus deformity: technique and radiological results in 173 knees with varus of more than 20 degrees. J Arthroplasty 20:550–561. https://doi.org/10.1016/j.arth.2005.04.009

    Article  PubMed  Google Scholar 

  47. Lovald ST, Ong KL, Malkani AL, Lau EC, Schmier JK, Kurtz SM et al (2014) Complications, mortality, and costs for outpatient and short-stay total knee arthroplasty patients in comparison to standard-stay patients. J Arthroplasty 29:510–515. https://doi.org/10.1016/j.arth.2013.07.020

    Article  PubMed  Google Scholar 

  48. Maempel JF, Walmsley PJ (2015) Enhanced recovery programmes can reduce length of stay after total knee replacement without sacrificing functional outcome at one year. Ann R Coll Surg Engl 97:563–567. https://doi.org/10.1308/rcsann.2015.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cook JR, Warren M, Ganley KJ, Prefontaine P, Wylie JW (2008) A comprehensive joint replacement program for total knee arthroplasty: a descriptive study. BMC Musculoskelet Disord 9:154. https://doi.org/10.1186/1471-2474-9-154

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cooke TDV, Sled EA (2009) Optimizing limb position for measuring knee anatomical axis alignment from standing knee radiographs. J Rheumatol 36:472–477. https://doi.org/10.3899/jrheum.080732

    Article  PubMed  Google Scholar 

  51. Kraus VB, Vail TP, Worrell T, McDaniel G (2005) A comparative assessment of alignment angle of the knee by radiographic and physical examination methods. Arthritis Rheum 52:1730–1735. https://doi.org/10.1002/art.21100

    Article  PubMed  Google Scholar 

  52. Navali AM, Bahari LAS, Nazari B (2012) A comparative assessment of alternatives to the full-leg radiograph for determining knee joint alignment. Sports Med Arthrosc Rehabil Ther Technol 4:40. https://doi.org/10.1186/1758-2555-4-40

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Yong Xiang Foo.

Ethics declarations

Ethical approval

This study was approved by SingHealth Centralised Institutional Review Board (CIRB) (CIRB Ref: 2021/2808).

Informed consent

Informed consent was obtained from all individuals participants included in the study.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, W.Y.X., Chen, J.Y., Pang, H.N. et al. Severe genu varus deformity does not affect enhanced recovery after surgery total knee arthroplasty outcomes. Arch Orthop Trauma Surg (2024). https://doi.org/10.1007/s00402-024-05280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00402-024-05280-y

Keywords

Navigation