Skip to main content
Log in

Pearls and pitfalls of PROMIS clinically significant outcomes in orthopaedic surgery

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Patient-Reported Outcome Measurement Information System (PROMIS) was developed as a uniform and generalizable PROM system using item response theory and computer adaptive testing. We aimed to assess the utilization of PROMIS for clinically significant outcomes (CSOs) measurements and provide insights into its use in orthopaedic research.

Materials and methods

We reviewed PROMIS CSO reports for orthopaedic procedures via PubMed, Cochrane Library, Embase, CINAHL, and Web of Science from inception to 2022, excluding abstracts and missing measurements. Bias was assessed using the Newcastle–Ottawa Scale (NOS) and questionnaire compliance. PROMIS domains, CSO measures, and study populations were described. A meta-analysis compared distribution and anchor-based MCIDs in low-bias (NOS ≥ 7) studies.

Results

Overall, 54 publications from 2016 to 2022 were reviewed. PROMIS CSO studies were observational with increasing publication rates. Evidence-level was II in 10/54, bias low in 51/54, and compliance ≥ 86% in 46/54. Most (28/54) analysed lower extremity procedures. PROMIS domains examined Pain Function (PF) in 44/54, Pain Interference (PI) in 36/54, and Depression (D) in 18/54. Minimal clinically important difference (MCID) was reported in 51/54 and calculated based on distribution in 39/51 and anchor in 29/51. Patient acceptable symptom state (PASS), substantial clinical benefit (SCB), and minimal detectable change (MDC) were reported in ≤ 10/54. MCIDs were not significantly greater than MDCs. Anchor-based MCIDs were greater than distribution based MCIDs (standardized mean difference = 0.44, p < 0.001).

Conclusions

PROMIS CSOs are increasingly utilized, especially for lower extremity procedures assessing the PF, PI, and D domains using distribution-based MCID. Using more conservative anchor-based MCIDs and reporting MDCs may strengthen results. Researchers should consider unique pearls and pitfalls when assessing PROMIS CSOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available per request directed to the correspoding author.

References

  1. Gagnier JJ (2017) Patient reported outcomes in orthopaedics. J Orthop Res 35:2098–2108

    Article  PubMed  Google Scholar 

  2. Makhni EC (2021) Meaningful clinical applications of patient-reported outcome measures in orthopaedics. J Bone Jt Surg Am 103:84–91

    Article  Google Scholar 

  3. Harris JD, Brand JC, Cote MP et al (2017) Research pearls: the significance of statistics and perils of pooling. Part 1: clinical versus statistical significance. Arthrosc J Arthrosc Relat Surg 33:1102–1112. https://doi.org/10.1016/j.arthro.2017.01.053

    Article  Google Scholar 

  4. Copay AG, Subach BR, Glassman SD et al (2007) Understanding the minimum clinically important difference: a review of concepts and methods. Spine J 7:541–546

    Article  PubMed  Google Scholar 

  5. Kvien TK, Heiberg T, Hagen KB (2007) Minimal clinically important improvement/difference (MCII/MCID) and patient acceptable symptom state (PASS): what do these concepts mean? In: Annals of the rheumatic diseases

  6. Ogura T, Ackermann J, Mestriner AB et al (2021) The minimal clinically important difference and substantial clinical benefit in the patient-reported outcome measures of patients undergoing osteochondral allograft transplantation in the knee. Cartilage. https://doi.org/10.1177/1947603518812552

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ousmen A, Touraine C, Deliu N et al (2018) Distribution- and anchor-based methods to determine the minimally important difference on patient-reported outcome questionnaires in oncology: a structured review. Health Qual Life Outcomes. https://doi.org/10.1186/s12955-018-1055-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cella D, Yount S, Rothrock N et al (2007) The patient-reported outcomes measurement information system (PROMIS): progress of an NIH roadmap cooperative group during its first two years. Med Care. https://doi.org/10.1097/01.mlr.0000258615.42478.55

    Article  PubMed  PubMed Central  Google Scholar 

  9. Riley WT, Rothrock N, Bruce B et al (2010) Patient-reported outcomes measurement information system (PROMIS) domain names and definitions revisions: further evaluation of content validity in IRT-derived item banks. Qual Life Res. https://doi.org/10.1007/s11136-010-9694-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dvorzhinskiy A, Gausden EB, Levack AE et al (2022) The performance of PROMIS computer adaptive testing for patient-reported outcomes in hip fracture surgery: a pilot study. Arch Orthop Trauma Surg 142:417–424. https://doi.org/10.1007/S00402-020-03640-Y/METRICS

    Article  PubMed  Google Scholar 

  11. Horn ME, Reinke EK, Couce LJ et al (2020) Reporting and utilization of Patient-Reported Outcomes Measurement Information System® (PROMIS®) measures in orthopedic research and practice: a systematic review. J Orthop Surg Res 15(1):1–13. https://doi.org/10.1186/S13018-020-02068-9

    Article  Google Scholar 

  12. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/JOURNAL.PMED.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/S10654-010-9491-Z

    Article  PubMed  Google Scholar 

  14. Gulledge CM, Lizzio VA, Smith DG et al (2020) What are the floor and ceiling effects of patient-reported outcomes measurement information system computer adaptive test domains in orthopaedic patients? A systematic review. Arthroscopy 36:901-912.e7. https://doi.org/10.1016/J.ARTHRO.2019.09.022

    Article  PubMed  Google Scholar 

  15. Brodke DJ, Saltzman CL, Brodke DS (2016) PROMIS for orthopaedic outcomes measurement. J Am Acad Orthop Surg 24:744–749. https://doi.org/10.5435/JAAOS-D-15-00404

    Article  PubMed  Google Scholar 

  16. Jayadevappa R, Malkowicz SB, Wittink M et al (2012) Comparison of distribution- and anchor-based approaches to infer changes in health-related quality of life of prostate cancer survivors. Health Serv Res 47:1902. https://doi.org/10.1111/J.1475-6773.2012.01395.X

    Article  PubMed  PubMed Central  Google Scholar 

  17. Froud R, Abel G (2014) Using ROC curves to choose minimally important change thresholds when sensitivity and specificity are valued equally: the forgotten lesson of pythagoras. Theoretical considerations and an example application of change in health status. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0114468

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ho B, Houck JR, Flemister AS et al (2016) Preoperative PROMIS scores predict postoperative success in foot and ankle patients. Foot Ankle Int 37:911–918. https://doi.org/10.1177/1071100716665113

    Article  PubMed  Google Scholar 

  19. Purvis TE, Andreou E, Neuman BJ et al (2017) Concurrent validity and responsiveness of PROMIS health domains among patients presenting for anterior cervical spine surgery. Spine (Phila Pa 1976) 42:E1357–E1365. https://doi.org/10.1097/BRS.0000000000002347

    Article  PubMed  Google Scholar 

  20. Lee AC, Driban JB, Price LL et al (2017) Responsiveness and minimally important differences for 4 patient-reported outcomes measurement information system short forms: physical function, pain interference, depression, and anxiety in knee osteoarthritis. J Pain 18:1096–1110. https://doi.org/10.1016/j.jpain.2017.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hung M, Saltzman CL, Kendall R et al (2018) What are the MCIDs for PROMIS, NDI, and ODI instruments among patients with spinal conditions? Clin Orthop Relat Res 476:2027–2036. https://doi.org/10.1097/CORR.0000000000000419

    Article  PubMed  PubMed Central  Google Scholar 

  22. Purvis TE, Neuman BJ, Riley LH, Skolasky RL (2018) Discriminant ability, concurrent validity, and responsiveness of PROMIS health domains among patients with lumbar degenerative disease undergoing decompression with or without arthrodesis. Spine (Phila Pa 1976) 43:1512–1520. https://doi.org/10.1097/BRS.0000000000002661

    Article  PubMed  Google Scholar 

  23. Chen RE, Papuga MO, Voloshin I et al (2018) Preoperative PROMIS scores predict postoperative outcomes after primary ACL reconstruction. Orthop J Sports Med 6:232596711877128. https://doi.org/10.1177/2325967118771286

    Article  Google Scholar 

  24. Hung M, Bounsanga J, Voss MW, Saltzman CL (2018) Establishing minimum clinically important difference values for the patient-reported outcomes measurement information system physical function, hip disability and osteoarthritis outcome score for joint reconstruction, and knee injury and osteoarthritis. World J Orthop 9:41–49. https://doi.org/10.5312/wjo.v9.i3.41

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anderson MR, Houck JR, Saltzman CL et al (2018) Validation and generalizability of preoperative PROMIS scores to predict postoperative success in foot and ankle patients. Foot Ankle Int 39:763–770. https://doi.org/10.1177/1071100718765225

    Article  PubMed  Google Scholar 

  26. Anderson MR, Baumhauer JF, DiGiovanni BF et al (2018) Determining success or failure after foot and ankle surgery using patient acceptable symptom state (PASS) and patient reported outcome information system (PROMIS). Foot Ankle Int 39:894–902. https://doi.org/10.1177/1071100718769666

    Article  PubMed  Google Scholar 

  27. Gausden EB, Levack A, Nwachukwu BU et al (2018) Computerized adaptive testing for patient reported outcomes in ankle fracture surgery. Foot Ankle Int 39:1192–1198. https://doi.org/10.1177/1071100718782487

    Article  PubMed  PubMed Central  Google Scholar 

  28. Steinhaus ME, Iyer S, Lovecchio F et al (2019) Minimal clinically important difference and substantial clinical benefit using PROMIS CAT in cervical spine surgery. Clin Spine Surg Spine Publ 32:392–397. https://doi.org/10.1097/BSD.0000000000000895

    Article  Google Scholar 

  29. Rubery PT, Houck J, Mesfin A et al (2019) Preoperative patient reported outcomes measurement information system scores assist in predicting early postoperative success in lumbar discectomy. Spine (Phila Pa 1976) 44:325–333. https://doi.org/10.1097/BRS.0000000000002823

    Article  PubMed  Google Scholar 

  30. Kazmers NH, Hung M, Bounsanga J et al (2019) Minimal clinically important difference after carpal tunnel release using the PROMIS platform. J Hand Surg Am 44:947-953.e1. https://doi.org/10.1016/j.jhsa.2019.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen RE, Papuga MO, Nicandri GT et al (2019) Preoperative patient-reported outcomes measurement information system (PROMIS) scores predict postoperative outcome in total shoulder arthroplasty patients. J Shoulder Elb Surg 28:547–554. https://doi.org/10.1016/j.jse.2018.08.040

    Article  Google Scholar 

  32. Sandvall B, Okoroafor UC, Gerull W et al (2019) Minimal clinically important difference for PROMIS physical function in patients with distal radius fractures. J Hand Surg Am 44:454-459.e1. https://doi.org/10.1016/j.jhsa.2019.02.015

    Article  PubMed  Google Scholar 

  33. Squires MD, Brodke DS, Neese A et al (2019) Physical function computer adaptive test outcomes in diabetic lumbar spine surgical patients. Spine J 19:1048–1056. https://doi.org/10.1016/j.spinee.2018.12.008

    Article  PubMed  Google Scholar 

  34. Kenney RJ, Houck J, Giordano BD et al (2019) Do patient reported outcome measurement information system (PROMIS) scales demonstrate responsiveness as well as disease-specific scales in patients undergoing knee arthroscopy? Am J Sports Med 47:1396–1403. https://doi.org/10.1177/0363546519832546

    Article  PubMed  Google Scholar 

  35. Stiegel KR, Lash JG, Peace AJ et al (2019) Early experience and results using patient-reported outcomes measurement information system scores in primary total hip and knee arthroplasty. J Arthroplasty 34:2313–2318. https://doi.org/10.1016/j.arth.2019.05.044

    Article  PubMed  Google Scholar 

  36. Shim J, Hamilton DF (2019) Comparative responsiveness of the PROMIS-10 Global Health and EQ-5D questionnaires in patients undergoing total knee arthroplasty. Bone Jt J 101-B:832–837. https://doi.org/10.1302/0301-620X.101B7.BJJ-2018-1543.R1

    Article  CAS  Google Scholar 

  37. Bernstein DN, Mayo K, Baumhauer JF et al (2019) Do patient sociodemographic factors impact the PROMIS scores meeting the patient-acceptable symptom state at the initial point of care in orthopaedic foot and ankle patients? Clin Orthop Relat Res 477:2555–2565. https://doi.org/10.1097/CORR.0000000000000866

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stephan A, Mainzer J, Kümmel D, Impellizzeri FM (2019) Measurement properties of PROMIS short forms for pain and function in orthopedic foot and ankle surgery patients. Qual Life Res 28:2821–2829. https://doi.org/10.1007/s11136-019-02221-w

    Article  PubMed  Google Scholar 

  39. Hung M, Baumhauer JF, Licari FW et al (2019) PROMIS and FAAM minimal clinically important differences in foot and ankle orthopedics. Foot Ankle Int 40:65–73. https://doi.org/10.1177/1071100718800304

    Article  PubMed  Google Scholar 

  40. Varlotta CG, Manning JH, Ayres EW et al (2020) Preoperative MRI predictors of health-related quality of life improvement after microscopic lumbar discectomy. Spine J 20:391–398. https://doi.org/10.1016/j.spinee.2019.09.020

    Article  PubMed  Google Scholar 

  41. Jenkins NW, Parrish JM, Brundage TS et al (2020) Association of preoperative PROMIS scores with short-term postoperative improvements in physical function after minimally invasive transforaminal lumbar interbody fusion. Neurospine 17:417–425. https://doi.org/10.14245/ns.2040048.024

    Article  PubMed  PubMed Central  Google Scholar 

  42. Franovic S, Kuhlmann N, Schlosser C et al (2020) Role of preoperative PROMIS scores in predicting postoperative outcomes and likelihood of achieving MCID following reverse shoulder arthroplasty. Semin Arthroplasty JSES 30:154–161. https://doi.org/10.1053/j.sart.2020.05.008

    Article  Google Scholar 

  43. Kazmers NH, Qiu Y, Yoo M et al (2020) The minimal clinically important difference of the PROMIS and QuickDASH instruments in a nonshoulder hand and upper extremity patient population. J Hand Surg Am 45:399-407.e6. https://doi.org/10.1016/j.jhsa.2019.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bernstein DN, Houck JR, Gonzalez RM et al (2020) Preoperative PROMIS scores predict postoperative PROMIS score improvement for patients undergoing hand surgery. HAND 15:185–193. https://doi.org/10.1177/1558944718791188

    Article  PubMed  Google Scholar 

  45. Khalil LS, Darrith B, Franovic S et al (2020) Patient-reported outcomes measurement information system (PROMIS) global health short forms demonstrate responsiveness in patients undergoing knee arthroplasty. J Arthroplasty 35:1540–1544. https://doi.org/10.1016/j.arth.2020.01.032

    Article  PubMed  Google Scholar 

  46. Lawrie CM, Abu-Amer W, Barrack RL, Clohisy JC (2020) Is the patient-reported outcome measurement information system feasible in bundled payment for care improvement in total hip arthroplasty patients? J Arthroplasty 35:1179–1185. https://doi.org/10.1016/j.arth.2019.12.021

    Article  PubMed  Google Scholar 

  47. Quinzi DA, Childs S, Kuhns B et al (2020) The impact of total hip arthroplasty surgical approach on patient-reported outcomes measurement information system computer adaptive tests of physical function and pain interference. J Arthroplasty 35:2899–2903. https://doi.org/10.1016/j.arth.2020.05.006

    Article  PubMed  Google Scholar 

  48. Ochen Y, Peek J, McTague MF et al (2020) Long-term outcomes after open reduction and internal fixation of bicondylar tibial plateau fractures. Injury 51:1097–1102. https://doi.org/10.1016/j.injury.2020.03.003

    Article  PubMed  Google Scholar 

  49. Kuhns BD, Reuter J, Lawton D et al (2020) Threshold values for success after hip arthroscopy using the patient-reported outcomes measurement information system assessment: determining the minimum clinically important difference and patient acceptable symptomatic state. Am J Sports Med 48:3280–3287. https://doi.org/10.1177/0363546520960461

    Article  PubMed  Google Scholar 

  50. Abdurrob A, Smith JT (2020) The effect of health insurance coverage on orthopaedic patient-reported outcome measures. J Am Acad Orthop Surg 28:e729–e734. https://doi.org/10.5435/JAAOS-D-19-00487

    Article  PubMed  Google Scholar 

  51. Snavely JE, Weiner JA, Johnson DJ et al (2021) Preoperative PROMIS scores predict postoperative outcomes in lumbar spine surgery patients. Spine (Phila Pa 1976) 46:1139–1146. https://doi.org/10.1097/BRS.0000000000003972

    Article  PubMed  Google Scholar 

  52. Warren JR, Pietroski AD, Franovic S et al (2021) Characterizing MCID and assessing the role of preoperative PROMIS scores in predicting outcomes for reverse total shoulder arthroplasty at 2-year follow-up. Semin Arthroplasty JSES. https://doi.org/10.1053/j.sart.2021.05.020

    Article  Google Scholar 

  53. Randall DJ, Zhang Y, Harris AP et al (2021) The minimal clinically important difference of the patient-reported outcomes measurement information system (PROMIS) physical function and upper extremity computer adaptive tests and QuickDASH in the setting of elbow trauma. JSES Int 5:1132–1138. https://doi.org/10.1016/j.jseint.2021.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  54. Haunschild ED, Condron NB, Gilat R et al (2021) Establishing clinically significant outcomes of the patient-reported outcomes measurement information system upper extremity questionnaire after primary reverse total shoulder arthroplasty. J Shoulder Elb Surg 30:2231–2239. https://doi.org/10.1016/j.jse.2021.03.147

    Article  Google Scholar 

  55. Gordon D, Pines Y, Ben-Ari E et al (2021) Minimal clinically important difference, substantial clinical benefit, and patient acceptable symptom state of PROMIS upper extremity after total shoulder arthroplasty. JSES Int 5:894–899. https://doi.org/10.1016/j.jseint.2021.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee DJ, Calfee RP (2021) The minimal clinically important difference for PROMIS physical function in patients with thumb carpometacarpal arthritis. HAND 16:638–643. https://doi.org/10.1177/1558944719880025

    Article  PubMed  Google Scholar 

  57. Wilkinson JT, Clawson JW, Allen CM et al (2021) Reliability of telephone acquisition of the PROMIS upper extremity computer adaptive test. J Hand Surg Am 46:187–199. https://doi.org/10.1016/j.jhsa.2020.09.014

    Article  PubMed  Google Scholar 

  58. Kazmers NH, Qiu Y, Ou Z et al (2021) Minimal clinically important difference of the PROMIS upper-extremity computer adaptive test and QuickDASH for ligament reconstruction tendon interposition patients. J Hand Surg Am 46:516-516.e7. https://doi.org/10.1016/j.jhsa.2020.11.007

    Article  PubMed  Google Scholar 

  59. Guo EW, Cross AG, Hessburg L et al (2021) The presence of preoperative depression symptoms does not hinder recovery after anterior cruciate ligament reconstruction. Orthop J Sports Med 9:232596712097021. https://doi.org/10.1177/2325967120970219

    Article  Google Scholar 

  60. Franovic S, Kuhlmann NA, Pietroski A et al (2021) Preoperative patient-centric predictors of postoperative outcomes in patients undergoing arthroscopic meniscectomy. Arthrosc J Arthrosc Relat Surg 37:964–971. https://doi.org/10.1016/j.arthro.2020.10.042

    Article  Google Scholar 

  61. Yedulla NR, Tramer JS, Koolmees DS et al (2021) Preoperative patient-reported outcomes measurement information system computerized adaptive testing (PROMIS CAT) scores predict achievement of minimum clinically important difference following anterior cruciate ligament reconstruction using an anchor-base. Arthrosc Sports Med Rehabil 3:e1891–e1898. https://doi.org/10.1016/j.asmr.2021.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  62. Forlenza EM, Lu Y, Cohn MR et al (2021) Establishing clinically significant outcomes for patient-reported outcomes measurement information system after biceps tenodesis. Arthrosc J Arthrosc Relat Surg 37:1731–1739. https://doi.org/10.1016/j.arthro.2020.12.236

    Article  Google Scholar 

  63. Kazmers NH, Qiu Y, Yoo M et al (2021) Establishing the minimal clinically important difference for the PROMIS upper extremity computer adaptive test version 2.0 in a nonshoulder hand and upper extremity population. J Hand Surg Am 46:927.e1-927.e10. https://doi.org/10.1016/j.jhsa.2021.01.023

    Article  PubMed  Google Scholar 

  64. Darrith B, Khalil LS, Franovic S et al (2021) Preoperative patient-reported outcomes measurement information system global health scores predict patients achieving the minimal clinically important difference in the early postoperative time period after total knee arthroplasty. J Am Acad Orthop Surg 29:e1417–e1426. https://doi.org/10.5435/JAAOS-D-20-01288

    Article  PubMed  Google Scholar 

  65. Bernstein DN, Koolmees D, Hester J et al (2021) Pain is the primary factor associated with satisfaction with symptoms for new patients presenting to the orthopedic clinic. Arthrosc J Arthrosc Relat Surg 37:2272–2278. https://doi.org/10.1016/j.arthro.2021.03.081

    Article  Google Scholar 

  66. Kempton LB, Gaski GE, Brown K et al (2021) Predictors of improved early clinical outcomes after elective implant removal. J Orthop Trauma 35:e103–e107. https://doi.org/10.1097/BOT.0000000000001920

    Article  PubMed  Google Scholar 

  67. Hartwell MJ, Morgan AM, Nelson PA et al (2021) Isolated acetabuloplasty for femoroacetabular impingement: favorable patient-reported outcomes and sustained survivorship at minimum 5-year follow-up. Arthrosc J Arthrosc Relat Surg 37:3288–3294. https://doi.org/10.1016/j.arthro.2021.03.080

    Article  Google Scholar 

  68. Bodendorfer BM, DeFroda SF, Clapp IM et al (2021) Defining clinically significant improvement on the patient-reported outcomes measurement information system test at 1-year follow-up for patients undergoing hip arthroscopy for the treatment of femoroacetabular impingement syndrome. Am J Sports Med 49:2457–2465. https://doi.org/10.1177/03635465211015687

    Article  PubMed  Google Scholar 

  69. Conti MS, Caolo KC, Nguyen JT et al (2021) Preoperative patient-reported outcome measures relationship with postoperative outcomes in flexible adult-acquired flatfoot deformity. Foot Ankle Int 42:268–277. https://doi.org/10.1177/1071100720963077

    Article  PubMed  Google Scholar 

  70. Passias PG, Pierce KE, Williamson T et al (2022) Establishing the minimal clinically important difference for the PROMIS Physical domains in cervical deformity patients. J Clin Neurosci 96:19–24. https://doi.org/10.1016/j.jocn.2021.12.008

    Article  PubMed  Google Scholar 

  71. Hollenberg AM, Hammert WC (2022) Minimal clinically important difference for PROMIS physical function and pain interference in patients following surgical treatment of distal radius fracture. J Hand Surg Am 47:137–144. https://doi.org/10.1016/j.jhsa.2021.08.025

    Article  PubMed  Google Scholar 

  72. Maldonado DR, Kyin C, Shapira J et al (2021) Defining the maximum outcome improvement of the modified harris hip score, the nonarthritic hip score, the visual analog scale for pain, and the international hip outcome tool-12 in the arthroscopic management for femoroacetabular impingement syndrome and labral tear. Arthroscopy 37:1477–1485. https://doi.org/10.1016/J.ARTHRO.2021.01.002

    Article  PubMed  Google Scholar 

  73. Klemt C, Uzosike AC, Esposito JG et al (2022) The utility of machine learning algorithms for the prediction of patient-reported outcome measures following primary hip and knee total joint arthroplasty. Arch Orthop Trauma Surg 143:2235–2245. https://doi.org/10.1007/S00402-022-04526-X/METRICS

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RG—designed the study, interpreted the data, drafted and revised the manuscript; IYM—designed the study, acquired, analyzed, interpreted the data, and drafted the manuscript. SP—designed the study and drafted and revised the manuscript; JAD—acquired the data and revised the manuscript; GA, ET, and DL—interpreted the data and revised the manuscript; YB—concepted the study and revised the manuscript; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Ron Gilat.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is a systematic review and no ethical approval was required.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilat, R., Mitchnik, I.Y., Patel, S. et al. Pearls and pitfalls of PROMIS clinically significant outcomes in orthopaedic surgery. Arch Orthop Trauma Surg 143, 6617–6629 (2023). https://doi.org/10.1007/s00402-023-04983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04983-y

Keywords

Navigation