Skip to main content

Advertisement

Log in

Osseoperception in transcutaneous osseointegrated prosthetic systems (TOPS) after transfemoral amputation: a prospective study

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

A Correction to this article was published on 17 December 2021

This article has been updated

Abstract

Background

Endo-exo prosthetics (EEP), which belongs to the transcutaneous osseointegrated prosthetic systems (TOPS), provides an alternative bone-anchored rehabilitation method for transfemoral amputees. It led to the question of whether transmitted forces from prosthetic feet are perceptible by osseoperception resulting in proprioceptive feedback of ground conditions.

Objectives

The following hypotheses emerged for our trial with the null hypothesis: EEP fitting after transfemoral amputation does not influence osseoperception. Alternative hypothesis 1: EEP patients achieve better osseoperception results than transfemoral amputees fitted with socket prosthesis. Alternative hypothesis 2: EEP carriers achieve comparable results with regards to their osseoperception as non-amputees.

Methods

N = 25 patients with EEP (mean age = 50,6 ± 9,4, male/female = 15/10) N = 25 patients with socket prostheses (mean age = 52,6 ± 13,1, male/female = 19/6) and N = 25 healthy volunteers were included in the experimental case–control study. In three blinded test modules (V1, V2, V3), the participants had to identify different degrees of shore hardness (c) of different materials (rubber balls (shore = 5–25c), foam cushions (shore = 5–30c), foam mats (shore = 5–30c) with their prosthetic foot (or a personally defined foot in healthy volunteers) without footwear and had to rank them into the correct order according to their tactile sensation and the degree of hardness. A maximum of 10 points could be scored per run.

Results

This experimental observational study included N = 75 participants. The mean age for the entire cohort was 42.8 ± 16.6 years and the BMI was 26.0 ± 4.8. Our results show a significant level of differences in tactile osseoperception between all groups (p < 0.001). A correlation between the mean values of V1-3 and the PMQ2.0 as well as the mean values of K-Level and the prosthesis wearing time per day showed for PMQ (r = 0.387, p = 0.006) and K-level (r = 0.448, p = 0.001) which is a moderate effect according to Cohen.

Conclusion

Our study results suggest that the EEP treatment can lead to an improvement in tactile sensory perception via the bone-anchored implant, which can lead to an increase in quality of life and improved gait safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Aschoff H-H (2017) TOPS - transkutane osseointegrierte Prothesensysteme. Orthop Unfallchirurgie Up2date 12(01):87–105. https://doi.org/10.1055/s-0042-111336

    Article  Google Scholar 

  2. Orgel M, Petri M, Ranker A, Wirries N, Graulich T, Krettek C, Winkelmann M, Aschoff HH (2021) Management, outcome, and novel classification system of periprosthetic fractures in patients with transcutaneous osseointegrated prosthetic systems (TOPS)-a retrospective cohort analysis. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03826-y

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ranker Alexander ÖM, Peter BJ, Christian K, Heinrich AH (2020) Transcutaneous osseointegrated prosthetic systems (TOPS) for transfemoral amputees a six-year retrospective analysis of the latest prosthetic design in Germany. Rehabilitation 59:51–59. https://doi.org/10.1055/a-1223-3205

    Article  Google Scholar 

  4. Aschoff HH (2017) Transcutaneous osseointegration after limb amputation : a review over 27 years. Unfallchirurg 120(4):278–284. https://doi.org/10.1007/s00113-017-0329-y

    Article  PubMed  Google Scholar 

  5. Hoffmeister T, Schwarze F, Aschoff HH (2017) The endo-exo prosthesis treatment concept : improvement in quality of life after limb amputation. Unfallchirurg 120(5):371–377. https://doi.org/10.1007/s00113-017-0350-1

    Article  CAS  PubMed  Google Scholar 

  6. Aschoff HH, Juhnke DL (2016) Endo-exo prostheses : osseointegrated percutaneously channeled implants for rehabilitation after limb amputation. Unfallchirurg 119(5):421–427. https://doi.org/10.1007/s00113-016-0175-3

    Article  PubMed  Google Scholar 

  7. Juhnke DL, Beck JP, Jeyapalina S, Aschoff HH (2015) Fifteen years of experience with integral-leg-prosthesis: cohort study of artificial limb attachment system. J Rehabil Res Dev 52(4):407–420. https://doi.org/10.1682/JRRD.2014.11.0280

    Article  PubMed  Google Scholar 

  8. Branemark RP, Hagberg K, Kulbacka-Ortiz K, Berlin O, Rydevik B (2018) Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year follow-up of patient-reported outcomes and complications. J Am Acad Orthop Surg. https://doi.org/10.5435/JAAOS-D-17-00621

    Article  PubMed Central  Google Scholar 

  9. Branemark R, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B (2014) A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J 96(1):106–113. https://doi.org/10.1302/0301-620X.96B1.31905

    Article  PubMed  Google Scholar 

  10. Hagberg K, Hansson E, Branemark R (2014) Outcome of percutaneous osseointegrated prostheses for patients with unilateral transfemoral amputation at two-year follow-up. Arch Phys Med Rehabil 95(11):2120–2127. https://doi.org/10.1016/j.apmr.2014.07.009

    Article  PubMed  Google Scholar 

  11. Al Muderis MM, Lu WY, Li JJ, Kaufman K, Orendurff M, Highsmith MJ, Lunseth PA, Kahle JT (2018) Clinically relevant outcome measures following limb osseointegration; systematic review of the literature. J Orthop Trauma 32(2):e64–e75. https://doi.org/10.1097/BOT.0000000000001031

    Article  PubMed  Google Scholar 

  12. Al Muderis M, Lu W, Li JJ (2017) Osseointegrated prosthetic limb for the treatment of lower limb amputations : experience and outcomes. Unfallchirurg 120(4):306–311. https://doi.org/10.1007/s00113-016-0296-8

    Article  PubMed  Google Scholar 

  13. Frolke JP, Leijendekkers RA, van de Meent H (2017) Osseointegrated prosthesis for patients with an amputation : multidisciplinary team approach in the Netherlands. Unfallchirurg 120(4):293–299. https://doi.org/10.1007/s00113-016-0302-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aschoff HH, Clausen A, Hoffmeister T (2009) The endo-exo femur prosthesis–a new concept of bone-guided, prosthetic rehabilitation following above-knee amputation. Z Orthop Unfall 147(5):610–615. https://doi.org/10.1055/s-0029-1185893

    Article  CAS  PubMed  Google Scholar 

  15. Clemente F, Hakansson B, Cipriani C, Wessberg J, Kulbacka-Ortiz K, Branemark R, Freden Jansson KJ, Ortiz-Catalan M (2017) Touch and hearing mediate osseoperception. Sci Rep 7:45363. https://doi.org/10.1038/srep45363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoyt BW, Walsh SA, Forsberg JA (2020) Osseointegrated prostheses for the rehabilitation of amputees (OPRA): results and clinical perspective. Expert Rev Med Dev 17(1):17–25. https://doi.org/10.1080/17434440.2020.1704623

    Article  CAS  Google Scholar 

  17. Schalk SA, Jonkergouw N, van der Meer F, Swaan WM, Aschoff HH, van der Wurff P (2015) The evaluation of daily life activities after application of an osseointegrated prosthesis fixation in a bilateral transfemoral amputee: a case study. Medicine (Baltimore) 94(36):e1416. https://doi.org/10.1097/MD.0000000000001416

    Article  CAS  PubMed  Google Scholar 

  18. Leijendekkers RA, van Hinte G, Frolke JP, van de Meent H, Atsma F, Nijhuis-van der Sanden MW, Hoogeboom TJ (2019) Functional performance and safety of bone-anchored prostheses in persons with a transfemoral or transtibial amputation: a prospective one-year follow-up cohort study. Clin Rehabil 33(3):450–464. https://doi.org/10.1177/0269215518815215

    Article  PubMed  Google Scholar 

  19. Leijendekkers RA, van Hinte G, Nijhuis-van der Sanden MW, Staal JB (2017) Gait rehabilitation for a patient with an osseointegrated prosthesis following transfemoral amputation. Physiother Theory Pract 33(2):147–161. https://doi.org/10.1080/09593985.2016.1265620

    Article  PubMed  Google Scholar 

  20. Klineberg I, Calford MB, Dreher B, Henry P, Macefield V, Miles T, Rowe M, Sessle B, Trulsson M (2005) A consensus statement on osseoperception. Clin Exp Pharmacol Physiol 32(1–2):145–146. https://doi.org/10.1111/j.1440-1681.2005.04144.x

    Article  CAS  PubMed  Google Scholar 

  21. 2 ITS (2010) Rubber, vulcanized or thermoplastic—determination of indentation hardness —part 4: durometer method (Shore hardness) (ISO 7619-1:2010)

  22. Wolfgang Grellmann SS (2015) Kunststoffprüfung. Carl Hanser Verlag

    Google Scholar 

  23. Herrmann K (2007) Härteprüfung an Metallen und Kunststoffen : Grundlagen und Überblick zu modernen Verfahren; mit 66 Tabellen. Expert Verlag

  24. Burger H, Giordano A, Bavec A, Franchignoni F (2019) The prosthetic mobility questionnaire, a tool for assessing mobility in people with lower-limb amputation: validation of PMQ 20 in slovenia. Int J Rehabil Res 42(3):263–269. https://doi.org/10.1097/MRR.0000000000000354

    Article  PubMed  Google Scholar 

  25. Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, Maguire M, Nash MS (2002) The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil 83(5):613–627. https://doi.org/10.1053/ampr.2002.32309

    Article  PubMed  Google Scholar 

  26. US Health Care Financing Administration (2001) Health and human services (ed) healthcare common procedure cod-ing system. US Health Care Financing Administration

    Google Scholar 

  27. Cohen J (1988) Statistical power analysis for the behavioral sciences, vol 2. Lawrence Erlbaum Associates

    Google Scholar 

  28. Franchignoni F, Monticone M, Giordano A, Rocca B (2015) Rasch validation of the prosthetic mobility questionnaire: a new outcome measure for assessing mobility in people with lower limb amputation. J Rehabil Med 47(5):460–465. https://doi.org/10.2340/16501977-1954

    Article  PubMed  Google Scholar 

  29. Engstrom B, Van de Ven C (1999) Therapy for Amputees 3rd Edition. Churchill Livingstone

  30. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1(3):98–101

    Article  Google Scholar 

  31. Haggstrom E, Hagberg K, Rydevik B, Branemark R (2013) Vibrotactile evaluation: osseointegrated versus socket-suspended transfemoral prostheses. J Rehabil Res Dev 50(10):1423–1434. https://doi.org/10.1682/JRRD.2012.08.0135

    Article  PubMed  Google Scholar 

  32. Jacobs R, Branemark R, Olmarker K, Rydevik B, Van Steenberghe D, Branemark PI (2000) Evaluation of the psychophysical detection threshold level for vibrotactile and pressure stimulation of prosthetic limbs using bone anchorage or soft tissue support. Prosthet Orthot Int 24(2):133–142. https://doi.org/10.1080/03093640008726536

    Article  CAS  PubMed  Google Scholar 

  33. Verrillo RT (1966) Vibrotactile sensitivity and the frequency response of the Pacinian corpuscle. Psyc Sci 4(1):135–136

    Article  Google Scholar 

  34. Sato M (1961) Response of pacinian corpuscles to sinusoidal vibration. J Physiol 159:391–409. https://doi.org/10.1113/jphysiol.1961.sp006817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hunt CC (1961) On the nature of vibration receptors in the hind limb of the cat. J Physiol 155:175–186. https://doi.org/10.1113/jphysiol.1961.sp006621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loewenstein WR, Skalak R (1966) Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol 182(2):346–378. https://doi.org/10.1113/jphysiol.1966.sp007827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calne DB, Pallis CA (1966) Vibratory sense: a critical review. Brain 89(4):723–746. https://doi.org/10.1093/brain/89.4.723

    Article  CAS  PubMed  Google Scholar 

  38. Schwartzman RJ, Bogdonoff MD (1968) Behavioral and anatomical analysis of vibration sensibility. Exp Neurol 20(1):43–51. https://doi.org/10.1016/0014-4886(68)90123-4

    Article  CAS  PubMed  Google Scholar 

  39. Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F (2020) Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 304:111151. https://doi.org/10.1016/j.pscychresns.2020.111151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Huse E, Larbig W, Birbaumer N, Flor H (2001) Cortical reorganization and pain. Empirical findings and therapeutic implication using the example of phantom pain. Schmerz 15(2):131–137. https://doi.org/10.1007/s004820170037

    Article  CAS  PubMed  Google Scholar 

  41. Rossini PM, Dal Forno G (2004) Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am 15(1):263–306. https://doi.org/10.1016/s1047-9651(03)00124-4

    Article  PubMed  Google Scholar 

  42. Simoes EL, Bramati I, Rodrigues E, Franzoi A, Moll J, Lent R, Tovar-Moll F (2012) Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees. J Neurosci 32(9):3211–3220. https://doi.org/10.1523/JNEUROSCI.4592-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Andoh J, Milde C, Diers M, Bekrater-Bodmann R, Trojan J, Fuchs X, Becker S, Desch S, Flor H (2020) Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective. Sci Rep 10(1):11504. https://doi.org/10.1038/s41598-020-68206-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klineberg I, Murray G (1999) Osseoperception: sensory function and proprioception. Adv Dent Res 13:120–129. https://doi.org/10.1177/08959374990130010101

    Article  CAS  PubMed  Google Scholar 

  45. Trulsson M (2005) Sensory and motor function of teeth and dental implants: a basis for osseoperception. Clin Exp Pharmacol Physiol 32(1–2):119–122. https://doi.org/10.1111/j.1440-1681.2005.04139.x

    Article  PubMed  Google Scholar 

  46. Jacobs R, Van Steenberghe D (2006) From osseoperception to implant-mediated sensory-motor interactions and related clinical implications. J Oral Rehabil 33(4):282–292. https://doi.org/10.1111/j.1365-2842.2006.01621.x

    Article  CAS  PubMed  Google Scholar 

  47. Batista M, Bonachela W, Soares J (2008) Progressive recovery of osseoperception as a function of the combination of implant-supported prostheses. Clin Oral Implants Res 19(6):565–569. https://doi.org/10.1111/j.1600-0501.2008.01529.x

    Article  PubMed  Google Scholar 

  48. Enkling N, Utz KH, Bayer S, Stern RM (2010) Osseoperception: active tactile sensibility of osseointegrated dental implants. Int J Oral Maxillofac Implants 25(6):1159–1167

    PubMed  Google Scholar 

  49. Lundborg G, Waites A, Bjorkman A, Rosen B, Larsson EM (2006) Functional magnetic resonance imaging shows cortical activation on sensory stimulation of an osseointegrated prosthetic thumb. Scand J Plast Reconstr Surg Hand Surg 40(4):234–239. https://doi.org/10.1080/02844310600787005

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. [MÖ]; methodology: [MÖ], [ME], [AR], [MW]; formal analysis and investigation: [MÖ], [ME]; writing—original draft preparation: [MÖ], [MW], [ME]; writing—review and editing: [MÖ], [TG], [CN], [AR]; resources: [MÖ], [H-HA], [TG]; supervision: [CK], [MW].

Corresponding author

Correspondence to Marcus Örgel.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Due to the retrospective data collection ethical approval was given as a waiver (No. 8894_BO_S_2020) and consent was granted by the Ethics Committee of Hannover Medical School.

Informed consent

Consent to participate was obtained from all individual participants included in the study.

Consent to participate

Due to the retrospective data collection ethical approval was given as a waiver (No. 8894_BO_S_2020) and consent was granted by the Ethics Committee of Hannover Medical School.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örgel, M., Elareibi, M., Graulich, T. et al. Osseoperception in transcutaneous osseointegrated prosthetic systems (TOPS) after transfemoral amputation: a prospective study. Arch Orthop Trauma Surg 143, 603–610 (2023). https://doi.org/10.1007/s00402-021-04099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04099-1

Keywords

Navigation