Skip to main content

Advertisement

Log in

miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aβ deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD “multiplex”: (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid β peptide (Aβ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS et al (2016) Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases. Sci Data 3:160089. https://doi.org/10.1038/sdata.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Armbrust KR, Wang X, Hathorn TJ, Cramer SW, Chen G, Zu T et al (2014) Mutant beta-III spectrin causes mGluR1alpha mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34:9891–9904. https://doi.org/10.1523/JNEUROSCI.0876-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avery AW, Crain J, Thomas DD, Hays TS (2016) A human beta-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding. Sci Rep 6:21375. https://doi.org/10.1038/srep21375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104

    Article  CAS  PubMed  Google Scholar 

  5. Beckmann ND, Lin W-J, Wang M, Cohain AT, Wang P, Ma W et al (2018) Multiscale causal network models of Alzheimer's disease identify VGF as a key regulator of disease. bioRxiv:458430

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Met 57:289–300

    Google Scholar 

  7. Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS (2012) Overview and findings from the religious orders study. Curr Alzheimer Res 9:628–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS (2012) Overview and findings from the rush Memory and Aging Project. Curr Alzheimer Res 9:646–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9:328–339. https://doi.org/10.1038/nrneurol.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brai E, Marathe S, Astori S, Fredj NB, Perry E, Lamy C et al (2015) Notch1 regulates hippocampal plasticity through interaction with the reelin pathway, glutamatergic transmission and CREB signaling. Front Cell Neurosci 9:447. https://doi.org/10.3389/fncel.2015.00447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  12. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z et al (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77:75–99. https://doi.org/10.1002/ana.24304

    Article  CAS  PubMed  Google Scholar 

  13. Caggiu E, Paulus K, Mameli G, Arru G, Sechi GP, Sechi LA (2018) Differential expression of miRNA 155 and miRNA 146a in Parkinson's disease patients. eNeurologicalSci 13:1–4. https://doi.org/10.1016/j.ensci.2018.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caselli E, D'Accolti M, Soffritti I, Zatelli MC, Rossi R, Degli E et al (2017) HHV-6A in vitro infection of thyrocytes and T cells alters the expression of miRNA associated to autoimmune thyroiditis. Virol J 14:3. https://doi.org/10.1186/s12985-016-0672-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen EY, Xu H, Gordonov S, Lim MP, Perkins MH, Ma'ayan A (2012) Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 28:105–111. https://doi.org/10.1093/bioinformatics/btr625

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Qi Y, Liu CF, Lu JM, Shi J, Shi Y (2018) MicroRNA expression data analysis to identify key miRNAs associated with Alzheimer's disease. J Gene Med 20:e3014. https://doi.org/10.1002/jgm.3014

    Article  CAS  PubMed  Google Scholar 

  17. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O'Keeffe S, Phatnani HP et al (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4:385–401. https://doi.org/10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa RM, Honjo T, Silva AJ (2003) Learning and memory deficits in Notch mutant mice. Curr Biol 13:1348–1354. https://doi.org/10.1016/s0960-9822(03)00492-5

    Article  CAS  PubMed  Google Scholar 

  19. De Pietri TD, Clovis YM, Huttner WB (2014) Detection and monitoring of microRNA expression in developing mouse brain and fixed brain cryosections. Methods Mol Biol 1092:31–42. https://doi.org/10.1007/978-1-60327-292-6_3

    Article  CAS  Google Scholar 

  20. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 27:457–464. https://doi.org/10.1002/ana.410270502

    Article  CAS  PubMed  Google Scholar 

  21. Diez-Zaera M, Diaz-Hernandez JI, Hernandez-Alvarez E, Zimmermann H, Diaz-Hernandez M, Miras-Portugal MT (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014–1024. https://doi.org/10.1091/mbc.E10-09-0740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  23. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database G (2015) The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 43:D726–736. https://doi.org/10.1093/nar/gku967

    Article  CAS  PubMed  Google Scholar 

  24. Fanutza T, Del Prete D, Ford MJ, Castillo PE, D'Adamio L (2015) APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. Elife 4:e09743. https://doi.org/10.7554/eLife.09743

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196. https://doi.org/10.1002/cne.20524

    Article  PubMed  Google Scholar 

  26. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M (2008) Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res 36:6608–6619. https://doi.org/10.1093/nar/gkn666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099. https://doi.org/10.1038/nature05992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guedes JR, Custodia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL (2014) Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Hum Mol Genet 23:6286–6301. https://doi.org/10.1093/hmg/ddu348

    Article  CAS  PubMed  Google Scholar 

  29. Haure-Mirande JV, Audrain M, Fanutza T, Kim SH, Klein WL, Glabe C et al (2017) Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathol 134:769–788. https://doi.org/10.1007/s00401-017-1737-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haure-Mirande JV, Wang M, Audrain M, Fanutza T, Kim SH, Heja S et al (2019) Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Abeta burden. Mol Psychiatry 24:431–446. https://doi.org/10.1038/s41380-018-0255-6

    Article  CAS  PubMed  Google Scholar 

  31. Henry RJ, Doran SJ, Barrett JP, Meadows VE, Sabirzhanov B, Stoica BA et al (2019) Inhibition of miR-155 limits neuroinflammation and improves functional recovery after experimental traumatic brain injury in mice. Neurotherapeutics 16:216–230. https://doi.org/10.1007/s13311-018-0665-9

    Article  CAS  PubMed  Google Scholar 

  32. Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G (2000) Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2:515–520. https://doi.org/10.1038/35019553

    Article  CAS  PubMed  Google Scholar 

  33. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–169. https://doi.org/10.1093/nar/gkq1107

    Article  CAS  PubMed  Google Scholar 

  34. Jackson M, Song W, Liu MY, Jin L, Dykes-Hoberg M, Lin CI et al (2001) Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410:89–93. https://doi.org/10.1038/35065091

    Article  CAS  PubMed  Google Scholar 

  35. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170. https://doi.org/10.1093/hmg/ddh019

    Article  CAS  PubMed  Google Scholar 

  36. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al (2003) APP processing and synaptic function. Neuron 37:925–937. https://doi.org/10.1016/s0896-6273(03)00124-7

    Article  CAS  PubMed  Google Scholar 

  37. Kellett KA, Williams J, Vardy ER, Smith AD, Hooper NM (2011) Plasma alkaline phosphatase is elevated in Alzheimer's disease and inversely correlates with cognitive function. Int J Mol Epidemiol Genet 2:114–121

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D et al (2016) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–580. https://doi.org/10.1093/nar/gkv1209

    Article  CAS  PubMed  Google Scholar 

  39. Kim SH, Steele JW, Lee SW, Clemenson GD, Carter TA, Treuner K et al (2014) Proneurogenic Group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Abeta oligomer mouse. Mol Psychiatry 19:1235–1242. https://doi.org/10.1038/mp.2014.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knight EM, Kim SH, Kottwitz JC, Hatami A, Albay R, Suzuki A et al (2016) Effective anti-Alzheimer Abeta therapy involves depletion of specific Abeta oligomer subtypes. Neurol Neuroimmunol Neuroinflamm 3:e237. https://doi.org/10.1212/NXI.0000000000000237

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(566–581):e569. https://doi.org/10.1016/j.immuni.2017.08.008

    Article  CAS  Google Scholar 

  42. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma'ayan A (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26:2438–2444. https://doi.org/10.1093/bioinformatics/btq466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45:1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  46. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41:e108. https://doi.org/10.1093/nar/gkt214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin TY, Cheng YC, Yang HC, Lin WC, Wang CC, Lai PL et al (2012) Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene 31:3287–3297. https://doi.org/10.1038/onc.2011.491

    Article  CAS  PubMed  Google Scholar 

  48. Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP et al (2012) Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet 8:e1003074. https://doi.org/10.1371/journal.pgen.1003074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87:139–145. https://doi.org/10.1016/j.ajhg.2010.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  51. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform 10:161. https://doi.org/10.1186/1471-2105-10-161

    Article  CAS  Google Scholar 

  53. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ et al (2019) Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570:332–337. https://doi.org/10.1038/s41586-019-1195-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR et al (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinform 12:322. https://doi.org/10.1186/1471-2105-12-322

    Article  CAS  Google Scholar 

  55. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  56. Mishra A, Macgregor S (2015) VEGAS2: software for more flexible gene-based testing. Twin Res Hum Genet 18:86–91. https://doi.org/10.1017/thg.2014.79

    Article  PubMed  Google Scholar 

  57. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R et al (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375. https://doi.org/10.1038/35019000

    Article  CAS  PubMed  Google Scholar 

  58. Olah J, Vincze O, Virok D, Simon D, Bozso Z, Tokesi N et al (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem 286:34088–34100. https://doi.org/10.1074/jbc.M111.243907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY, Shieh SY (2007) The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 26:3968–3980. https://doi.org/10.1038/sj.emboj.7601825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patrick E, Rajagopal S, Wong HA, McCabe C, Xu J, Tang A et al (2017) Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease. Mol Neurodegener 12:51. https://doi.org/10.1186/s13024-017-0191-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflamm 13:287. https://doi.org/10.1186/s12974-016-0753-x

    Article  CAS  Google Scholar 

  62. Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V et al (2018) Multiscale analysis of independent alzheimer's cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99(64–82):e67. https://doi.org/10.1016/j.neuron.2018.05.023

    Article  CAS  Google Scholar 

  63. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rizzo R, Soffritti I, D'Accolti M, Bortolotti D, Di Luca D, Caselli E (2017) HHV-6A/6B infection of NK cells modulates the expression of miRNAs and transcription factors potentially associated to impaired NK activity. Front Microbiol 8:2143. https://doi.org/10.3389/fmicb.2017.02143

    Article  PubMed  PubMed Central  Google Scholar 

  65. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  66. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG et al (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). https://doi.org/10.1093/database/baw100

    Article  Google Scholar 

  67. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358. https://doi.org/10.1093/bioinformatics/bts163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma S, Lu HC (2018) microRNAs in neurodegeneration: current findings and potential impacts. J Alzheimers Dis Parkinsonism. https://doi.org/10.4172/2161-0460.1000420

    Article  PubMed  PubMed Central  Google Scholar 

  69. Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21:491–497. https://doi.org/10.1016/j.gde.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  70. Sierksma A, Lu A, Salta E, Vanden Eynden E, Callaerts-Vegh Z, D'Hooge R et al (2018) Deregulation of neuronal miRNAs induced by amyloid-beta or TAU pathology. Mol Neurodegener 13:54. https://doi.org/10.1186/s13024-018-0285-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sims R, Hill M, Williams J (2020) The multiplex model of the genetics of Alzheimer's disease. Nat Neurosci. https://doi.org/10.1038/s41593-020-0599-5

    Article  PubMed  Google Scholar 

  72. Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521. https://doi.org/10.12688/f1000research.7563.2

    Article  PubMed  Google Scholar 

  73. Song J, Lee JE (2015) miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function. Front Aging Neurosci 7:61. https://doi.org/10.3389/fnagi.2015.00061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sunyer B, Patil S, Höger H, Luber G (2007) Barnes maze, a useful task to assess spatial reference memory in the mice. Protocol Exchange. https://doi.org/10.1038/nprot.2007.390

    Article  Google Scholar 

  76. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410

    Article  CAS  PubMed  Google Scholar 

  77. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608. https://doi.org/10.1126/science.1141229

    Article  CAS  PubMed  Google Scholar 

  78. Thome AD, Harms AS, Volpicelli-Daley LA, Standaert DG (2016) microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36:2383–2390. https://doi.org/10.1523/JNEUROSCI.3900-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vardy ER, Kellett KA, Cocklin SL, Hooper NM (2012) Alkaline phosphatase is increased in both brain and plasma in Alzheimer's disease. Neurodegener Dis 9:31–37. https://doi.org/10.1159/000329722

    Article  CAS  PubMed  Google Scholar 

  80. Watson L, Keatinge M, Gegg M, Bai Q, Sandulescu MC, Vardi A et al (2019) Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher's disease. Neurobiol Dis 127:563–569. https://doi.org/10.1016/j.nbd.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  81. Woodbury ME, Freilich RW, Cheng CJ, Asai H, Ikezu S, Boucher JD et al (2015) miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 35:9764–9781. https://doi.org/10.1523/JNEUROSCI.4790-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J et al (2018) Ensembl 2018. Nucleic Acids Res 46:D754–D761. https://doi.org/10.1093/nar/gkx1098

    Article  CAS  PubMed  Google Scholar 

  83. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153:707–720. https://doi.org/10.1016/j.cell.2013.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao Y, Yao Y, Xu H, Lambeth L, Smith LP, Kgosana L et al (2009) A functional MicroRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol 83:489–492. https://doi.org/10.1128/JVI.01166-08

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. G. and M. E. E. acknowledge the support of U01 AG046170 from the NIA. B. R., S. G., M. E. E., and J. T. D. acknowledge the support of 1R56AG058469, 1R01AG058469, and R21AG63968 from the NIA, and P50 AG005138 to Mary Sano. B. R. and J. T. D. acknowledge the support of U01AG061835 and R21AG063068 from the NIA. Philanthropic financial support was provided by Katherine Gehl and by the George B. Link, Jr., Foundation. DM acknowledges the support of the Alzheimer’s Association (AARGD-17-529197). The computational resources and staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai also contributed to the performance of this research. The authors also acknowledge Research Computing at Arizona State University for providing computational resources that have contributed to this research. The Scott Moskowitz Foundation for Alzheimer’s Research, the Jane Martin and Stuart Katz Foundation, the Werber Family Foundation, the Sara and Gideon Gartner Foundation, the Louis B. Mayer Foundation, the, the Lady Va and Sir Deryck Maughan Foundation, the Georgianne and Dr. Reza Khatib Foundation, and the Linda Wachner Foundation provided additional support. The results published here are in part based on data obtained from the AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org/). MSBB RNA-sequencing data was generated from postmortem brain tissue collected through the Mount Sinai VA Medical Center Brain Bank and were provided by Dr. Eric Schadt from Mount Sinai School of Medicine. The MAYO TCX RNAseq study data were provided by the following sources: The Mayo Clinic Alzheimers Disease Genetic Studies, led by Dr. Nilufer Ertekin-Taner and Dr. Steven G. Younkin, Mayo Clinic, Jacksonville, FL using samples from the Mayo Clinic Study of Aging, the Mayo Clinic Alzheimer's Disease Research Center, and the Mayo Clinic Brain Bank. Data collection was supported through funding by NIA grants P50 AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 AG006786, R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 NS080820, CurePSP Foundation, and support from Mayo Foundation. Study data include samples collected through the Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona. The Brain and Body Donation Program is supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinsons Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimers Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimers Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium) and the Michael J. Fox Foundation for Parkinsons Research. The ROS/MAP RNAseq study data were provided by the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Data collection was supported through funding by NIA grants P30AG10161 (ROS), R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), R01AG30146, R01AG36836 (RNAseq), RF1AG57473 (single nucleus RNAseq), U01AG46152 (ROSMAP AMP-AD, targeted proteomics), U01AG61356 (whole genome sequencing, targeted proteomics, ROSMAP AMP-AD), the Illinois Department of Public Health (ROSMAP), and the Translational Genomics Research Institute (genomic). Additional phenotypic data can be requested at www.radc.rush.edu.

Author information

Authors and Affiliations

Authors

Contributions

BR, JVHM, SG, MEE, JTD designed the study. BR performed the computational analysis. JVHM, MA, TF, SK, MEE carried out the murine miR155 experiments. DM performed the human miR155 experiments. BR, JVHM, SG, MEE, JTD wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Joel T. Dudley or Michelle E. Ehrlich.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests in relation to the work described.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2020_2185_MOESM1_ESM.tiff

Absence or deficiency of miR155 does not modify the levels of human APP or synaptic markers in 8-month-old mice. Western blots and densitometric analyses of 6E10, Synapsin-1, and PSD-95 levels from brain homogenates of 8-month-old males and females WT and APP/PSEN1 mice WT, KO, or heterozygous for miR155 (TIFF 1020 kb)

401_2020_2185_MOESM2_ESM.tiff

Normalized expression of outlier log2FC genes. We observed a small subset of identified DEG with unusually large absolute log2FC (>20). Inspection of normalized gene expression indicates that results arise from comparison of groups where one group did not have any detectable expression (TIFF 159 kb)

401_2020_2185_MOESM3_ESM.tiff

Comparative transcriptomics across genotypes (a) Overlapping DEG (FDR<0.1) across main transcriptomic comparisons. Gene symbols shown in intersecting cells with overlapping DEG. (b) Comparative expression of BTG3 across the study. DEG: Differentially expressed gene, WT: Wildtype (TIFF 188 kb)

Differential gene expression analysis results (XLSX 45528 kb)

Gene set enrichment results (XLSX 961 kb)

Sample demographics of control and AD cases used for in situ hybridization studies (DOCX 18 kb)

Summary of human post-mortem brain tissue samples: Mount Sinai Brain Bank (DOCX 19 kb)

Summary of human post-mortem brain tissue samples: Religious Orders Study (DOCX 15 kb)

Summary of human post-mortem brain tissue samples: Memory Aging Project (DOCX 15 kb)

Summary of human post-mortem brain tissue samples: Mayo TCX (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Readhead, B., Haure-Mirande, JV., Mastroeni, D. et al. miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease. Acta Neuropathol 140, 295–315 (2020). https://doi.org/10.1007/s00401-020-02185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02185-z

Navigation