Skip to main content
Log in

Proteomics and transcriptomics in atrial fibrillation

Proteomik und Transkriptomik bei Vorhofflimmern

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common tachyarrhythmia. AF, due to substantial remodeling processes initiated in the atria, is a typically self-sustaining and progressive disease. Atrial remodeling has been intensively investigated at the molecular level in recent decades. Although the application of “omics” technologies has already significantly contributed to our current understanding of the pathophysiology of AF, the complexity of the latter and the large heterogeneity of AF patients remained a major limitation. With the advent of novel “omics” and by applying integrative approaches, it will be possible to extract more information and push boundaries. The present review will summarize the contribution of transcriptomics and proteomics to our understanding of the pathophysiology of AF.

Zusammenfassung

Vorhofflimmern (AF) ist die häufigste Tachyarrhythmie in der klinischen Praxis. AF ist aufgrund von signifikanten atrialen Remodeling-Prozessen eine typischerweise selbsterhaltende und progrediente Erkrankung. Das atriale Remodeling wurde in den letzten Jahrzehnten intensiv auf molekularer Ebene untersucht. Obwohl die Anwendung von „Omics“-Technologien bereits wesentlich zu unserem derzeitigen Verständnis der Pathophysiologie von AF beigetragen hat, blieben die Komplexität der zugrundeliegenden molekularen Mechanismen und die große Heterogenität von AF-Patienten wesentliche Limitationen. Mit der jetzigen Verfügbarkeit von neuartigen „Omics“-Technologien und durch die Anwendung von integrativen Ansätzen wird es möglich sein, mehr Informationen zu extrahieren und bestehende Grenzen zu verschieben. Der vorliegende Review fasst den Beitrag der Transkriptomik und Proteomik zu unserem Verständnis der Pathophysiologie von AF zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  PubMed  Google Scholar 

  2. Allessie MA (1998) Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol 9:1378–1393

    Article  CAS  PubMed  Google Scholar 

  3. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  CAS  PubMed  Google Scholar 

  4. Barallobre-Barreiro J, Mayr M (2015) Affinity proteomics for phosphatase interactions in atrial fibrillation. J Am Coll Cardiol 65:174–176

    Article  PubMed  Google Scholar 

  5. Barallobre-Barreiro J, Gupta SK, Zoccarato A et al (2016) Glycoproteomics reveals decorin peptides with anti-myostatin activity in human atrial fibrillation. Circulation 134:817–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blaauw Y, Beier N, van der Voort P et al (2004) Inhibitors of the Na+/H+ exchanger cannot prevent atrial electrical remodeling in the goat. J Cardiovasc Electrophysiol 15:440–446

    Article  PubMed  Google Scholar 

  7. Bukowska A, Lendeckel U, Krohn A et al (2008) Atrial fibrillation down-regulates renal neutral endopeptidase expression and induces profibrotic pathways in the kidney. Europace 10:1212–1217

    Article  PubMed  Google Scholar 

  8. Bukowska A, Schild L, Keilhoff G et al (2008) Mitochondrial dysfunction and redox signaling in atrial tachyarrhythmia. Exp Biol Med (Maywood) 233:558–574

    Article  CAS  Google Scholar 

  9. Cañón S, Caballero R, Herraiz-Martínez A et al (2016) miR-208b upregulation interferes with calcium handling in HL-1 atrial myocytes: Implications in human chronic atrial fibrillation. J Mol Cell Cardiol 99:162–173

    Article  PubMed  Google Scholar 

  10. Cardin S, Libby E, Pelletier P et al (2007) Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ Res 100:425–433

    Article  CAS  PubMed  Google Scholar 

  11. Casamassimi A, Federico A, Rienzo M et al (2017) Transcriptome profiling in human diseases: new advances and perspectives. Int J Mol Sci E1652:18

    Google Scholar 

  12. Cha Y‑M, Dzeja PP, Shen WK et al (2003) Failing atrial myocardium: energetic deficits accompany structural remodeling and electrical instability. Am J Physiol 284:H1313–H1320

    CAS  Google Scholar 

  13. Chen G, Guo H, Song Y et al (2016) Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Mol Med Rep 14:5311–5317

    Article  CAS  PubMed  Google Scholar 

  14. Chiang DY, Heck AJ, Dobrev D, Wehrens XH (2016) Regulating the regulator: Insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 101:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chilukoti RK, Mostertz J, Bukowska A et al (2013) Effects of irbesartan on gene expression revealed by transcriptome analysis of left atrial tissue in a porcine model of acute rapid pacing in vivo. Int J Cardiol 168:2100–2108

    Article  PubMed  Google Scholar 

  16. Chilukoti RK, Giese A, Malenke W et al (2015) Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int J Cardiol 187:604–613

    Article  CAS  PubMed  Google Scholar 

  17. Cooley N, Cowley MJ, Lin RC et al (2012) Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol Genomics 44:211–219

    Article  CAS  PubMed  Google Scholar 

  18. Deshmukh A, Barnard J, Sun H et al (2015) Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circ Arrhythm Electrophysiol 8:32–41

    Article  CAS  PubMed  Google Scholar 

  19. De Souza AI, Cardin S, Wait R et al (2010) Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J Mol Cell Cardiol 49:851–863

    Article  PubMed  Google Scholar 

  20. Frustaci A, Chimenti C, Bellocci F et al (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96:1180–1184

    Article  CAS  PubMed  Google Scholar 

  21. Girerd N, Scridon A, Bessiere F et al (2013) Periatrial epicardial fat is associated with markers of endothelial dysfunction in patients with atrial fibrillation. PLoS ONE 8:e77167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goette A, Honeycutt C, Langberg JJ (1996) Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 94:2968–2974

    Article  CAS  PubMed  Google Scholar 

  23. Goette A, Jentsch-Ullrich K, Lendeckel U et al (2003) Effect of atrial fibrillation on hematopoietic progenitor cells: a novel pathophysiological role of the atrial natriuretic peptide? Circulation 108:2446–2449

    Article  PubMed  Google Scholar 

  24. Haemers P, Hamdi H, Guedj K et al (2017) Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J 38:53–61

    Article  PubMed  Google Scholar 

  25. Hatem SN, Sanders P (2014) Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res 102:205–213

    Article  CAS  PubMed  Google Scholar 

  26. Jayachandran JV, Zipes DP, Weksler J, Olgin JE (1866) Role of the Na(+)/H(+) exchanger in short-term atrial electrophysiological remodeling. Circulation 101:1861

    Article  Google Scholar 

  27. Jeganathan J, Saraf R, Mahmood F et al (2017) Mitochondrial dysfunction in atrial tissue of patients developing postoperative atrial fibrillation. Ann Thorac Surg 104:1547–1555

    Article  PubMed  Google Scholar 

  28. Kim YH, Lim DS, Lee JH et al (2003) Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 35:336–349

    Article  CAS  PubMed  Google Scholar 

  29. Kim NH, Ahn Y, Oh SK et al (2005) Altered patterns of gene expression in response to chronic atrial fibrillation. Int Heart J 46:383–395

    Article  CAS  PubMed  Google Scholar 

  30. Lai L‑P, Lin J‑L, Lin C‑S et al (2004) Functional genomic study on atrial fibrillation using cDNA microarray and two-dimensional protein electrophoresis techniques and identification of the myosin regulatory light chain isoform reprogramming in atrial fibrillation. J Cardiovasc Electrophysiol 15:214–223

    Article  PubMed  Google Scholar 

  31. Lai LP, Su MJ, Lin JL et al (1999) Down-regulation of L‑type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 33:1231–1237

    Article  CAS  PubMed  Google Scholar 

  32. Lamirault G, Gaborit N, Le Meur N et al (2006) Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol 40:173–184

    Article  CAS  PubMed  Google Scholar 

  33. Lendeckel U, Arndt M, Wrenger S et al (2001) Expression and activity of ectopeptidases in fibrillating human atria. J Mol Cell Cardiol 33:1273–1281

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Wang Z, Yin Z et al (2017) Gender differences in fibrosis remodeling in patients with long-standing persistent atrial fibrillation. Oncotarget 8:53714–53729

    PubMed  PubMed Central  Google Scholar 

  35. Li Z, Wang X, Wang W et al (2017) Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 108:73–85

    Article  CAS  PubMed  Google Scholar 

  36. Lind L, Sundström J, Stenemo M et al (2017) Discovery of new biomarkers for atrial fibrillation using a custom-made proteomics chip. Heart 103:377–382

    Article  PubMed  Google Scholar 

  37. Linz D, Mahfoud F, Schotten U et al (2013) Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension 61:225–231

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Wu H, Wu S, Wang C (2017) Single-cell sequencing technologies for cardiac stem cell studies. Stem Cells Dev. https://doi.org/10.1089/scd.2017.0050

    Google Scholar 

  39. Liu H, Chen G, Zheng H et al (2016) Differences in atrial fibrillation-associated proteins between the left and right atrial appendages from patients with rheumatic mitral valve disease: a comparative proteomic analysis. Mol Med Rep 14:4232–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Zhang Y, Wang N et al (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387

    Article  CAS  PubMed  Google Scholar 

  41. Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Article  CAS  PubMed  Google Scholar 

  42. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    Article  CAS  PubMed  Google Scholar 

  43. Mayr M, Yusuf S, Weir G et al (2008) Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol 51:585–594

    Article  CAS  PubMed  Google Scholar 

  44. Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 35:1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nattel S (1999) Atrial electrophysiological remodeling caused by rapid atrial activation: underlying mechanisms and clinical relevance to atrial fibrillation. Cardiovasc Res 42:298–308

    Article  CAS  PubMed  Google Scholar 

  46. Ohki R, Yamamoto K, Ueno S et al (2005) Gene expression profiling of human atrial myocardium with atrial fibrillation by DNA microarray analysis. Int J Cardiol 102:233–238

    Article  PubMed  Google Scholar 

  47. Pawloski-Dahm CM, Song G, Kirkpatrick DL et al (1998) Effects of total replacement of atrial myosin light chain-2 with the ventricular isoform in atrial myocytes of transgenic mice. Circulation 97:1508–1513

    Article  CAS  PubMed  Google Scholar 

  48. Ravens U (2015) Pathophysiology and progression of atrial fibrillation: do we have a comprehensive model? Trends Cardiovasc Med 25:485–486

    Article  PubMed  Google Scholar 

  49. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biol Med 38:1543–1552

    Article  CAS  Google Scholar 

  50. Ruan Z, Sun X, Sheng H, Zhu L (2015) Long non-coding RNA expression profile in atrial fibrillation. Int J Clin Exp Pathol 8:8402–8410

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schild L, Bukowska A, Gardemann A et al (2006) Rapid pacing of embryoid bodies impairs mitochondrial ATP synthesis by a calcium-dependent mechanism—a model of in vitro differentiated cardiomyocytes to study molecular effects of tachycardia. Biochim Biophys Acta 1762:608–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schotten U, Verheule S, Kirchhof P et al (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325

    Article  PubMed  Google Scholar 

  53. Sharma K, D’Souza RCJ, Tyanova S et al (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:1583–1594

    Article  CAS  PubMed  Google Scholar 

  54. Shinagawa K, Shi YF, Tardif JC et al (2002) Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation 105:2672–2678

    Article  PubMed  Google Scholar 

  55. Sigurdsson MI, Saddic L, Heydarpour M et al (2017) Post-operative atrial fibrillation examined using whole-genome RNA sequencing in human left atrial tissue. BMC Med Genomics 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thijssen VL, Ausma J, Liu GS et al (2000) Structural changes of atrial myocardium during chronic atrial fibrillation. Cardiovasc Pathol 9:17–28

    Article  CAS  PubMed  Google Scholar 

  57. Tu T, Zhou S, Liu Z et al (2014) Quantitative proteomics of changes in energy metabolism-related proteins in atrial tissue from valvular disease patients with permanent atrial fibrillation. Circ J 78:993–1001

    Article  CAS  PubMed  Google Scholar 

  58. van der Velden HM, van Kempen MJ, Wijffels MC et al (1998) Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 9:596–607

    Article  PubMed  Google Scholar 

  59. Venteclef N, Guglielmi V, Balse E et al (2015) Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 36:795–805a

    Article  CAS  PubMed  Google Scholar 

  60. Viviano A, Yin X, Zampetaki A et al (2017) Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation. Europace. https://doi.org/10.1093/europace/eux113

    PubMed  Google Scholar 

  61. Yeh YH, Kuo CT, Lee YS et al (2013) Region-specific gene expression profiles in the left atria of patients with valvular atrial fibrillation. Heart Rhythm 10:383–391

    Article  PubMed  Google Scholar 

  62. Yeh Y‑H, Wakili R, Qi X‑Y et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102

    Article  CAS  PubMed  Google Scholar 

  63. Yue L, Melnyk P, Gaspo R et al (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84:776–784

    Article  CAS  PubMed  Google Scholar 

  64. Yu XJ, Zou LH, Jin JH et al (2017) Long noncoding RNAs and novel inflammatory genes determined by RNA sequencing in human lymphocytes are up-regulated in permanent atrial fibrillation. Am J Transl Res 9:2314–2326

    PubMed  PubMed Central  Google Scholar 

  65. Zhang P, Wang W, Wang X et al (2013) Protein analysis of atrial fibrosis via label-free proteomics in chronic atrial fibrillation patients with mitral valve disease. PLoS ONE 8:e60210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou T, Matsunami H (2017) Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell Tissue Res. https://doi.org/10.1007/s00441-017-2682-0

    Google Scholar 

Download references

Acknowledgements

We thank Jörg Mostertz and Falco Hochgräfe for their great support in phosphoproteome analysis. We would like to apologize to all authors who could not be referred to due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Lendeckel.

Ethics declarations

Conflict of interest

M. Sühling, C. Wolke, C. Scharf and U. Lendeckel declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sühling, M., Wolke, C., Scharf, C. et al. Proteomics and transcriptomics in atrial fibrillation. Herzschr Elektrophys 29, 70–75 (2018). https://doi.org/10.1007/s00399-017-0551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0551-x

Keywords

Schlüsselwörter

Navigation