Skip to main content
Log in

Pathophysiology of ventricular tachyarrhythmias

From automaticity to reentry

Pathophysiologie ventrikulärer Tachyarrhythmien

Von der Automatizität zum Reentry

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Ventricular arrhythmias are a heterogeneous group of arrhythmias and may arise in patients with cardiomyopathy or structurally normal hearts. The electrophysiologic mechanisms responsible for the initiation and maintenance of ventricular tachycardia include enhanced automaticity, triggered activity, and reentry. Differentiating between these three mechanisms can be challenging and usually requires an invasive electrophysiology study. Establishing the underlying mechanism in a particular patient is helpful to define the optimal therapeutic approach, including the selection of pharmacologic agents or delineation of an ablation strategy.

Zusammenfassung

Ventrikuläre Arrhythmien stellen eine heterogene Gruppe von Arrhythmien dar und können bei Patienten mit einer Kardiomyopathie oder mit strukturell normalem Herzen auftreten. Die elektrophysiologischen Mechanismen, die für den Beginn und das Anhalten ventrikulärer Tachykardien verantwortlich sind, beinhalten eine erhöhte Automatizität, Triggeraktivität und Reentry. Die Differenzierung dieser drei Mechanismen kann eine Herausforderung darstellen und bedarf in der Regel einer invasiven elektrophysiologischen Untersuchung. Die Etablierung des zugrunde liegenden Mechanismus bei einem bestimmten Patienten kann hilfreich sein, um die optimale Therapie zu finden, einschließlich der Wahl der Pharmazeutika oder dem Entwurf einer Ablationsstrategie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Issa Z, Miller J, Zipes D (2012) Electrophysiological mechanisms of cardiac arrhythmias. In: Clinical arrhythmology and electrophysiology: a complement to Braunwald’s heart disease, 2nd edn. Saunders, Philadelphia, pp 36–61

    Chapter  Google Scholar 

  2. Antzelevitch C, Burashnikov A (2011) Overview of basic mechanisms of cardiac arrhythmia. Card Electrophysiol Clin 3(1):23–45

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ceremuzyński L, Staszewska-Barczak J, Herbaczynska-Cedro K (1969) Cardiac rhythm disturbances and the release of catecholamines after acute coronary occlusion in dogs. Cardiovasc Res 3(2):190–197

    Article  PubMed  Google Scholar 

  4. Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2(3):316–324

    Article  PubMed  Google Scholar 

  5. Gadsby DC, Cranefield PF (1979) Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol 73(6):819–837

    Article  CAS  PubMed  Google Scholar 

  6. Zipes DP (2003) Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol 14(8):902–912

    Article  PubMed  Google Scholar 

  7. Zeng J, Rudy Y (1995) Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J 68(3):949–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS (2011) Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol 4(1):103–111

    Article  PubMed  Google Scholar 

  9. Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC (2015) Cardiac late Na+ current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12(2):440–448

    Article  PubMed  Google Scholar 

  10. January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L‑type Ca2+ current. Circ Res 64(5):977–990

    Article  CAS  PubMed  Google Scholar 

  11. Szabo B, Sweidan R, Rajagopalan CV, Lazzara R (1994) Role of Na+:Ca2+ exchange current in Cs(+)-induced early afterdepolarizations in Purkinje fibers. J Cardiovasc Electrophysiol 5(11):933–944

    Article  CAS  PubMed  Google Scholar 

  12. Lerman BB (2015) Ventricular tachycardia: mechanistic insights derived from adenosine. Circ Arrhythm Electrophysiol 8(2):483–491

    Article  PubMed  Google Scholar 

  13. Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780

    Article  CAS  PubMed  Google Scholar 

  14. Katra RP, Laurita KR (2005) Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 96:535–542

    Article  CAS  PubMed  Google Scholar 

  15. Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosen MR, Gelband H, Merker C, Hoffman BF (1973) Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 47(4):681–689

    Article  CAS  PubMed  Google Scholar 

  17. Saunders JH, Ferrier GR, Lerman BB (2007) Mechanism of outflow tract tachycardia. Heart Rhythm 4:973–976

    Article  Google Scholar 

  18. Lerman BB (2015) Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol 12(10):597–608

    Article  CAS  PubMed  Google Scholar 

  19. Lerman BB, Ip JE, Shah BK, Thomas G, Liu CF, Ciaccio EJ, Wit AL, Cheung JW, Markowitz SM (2014) Mechanism-specific effects of adenosine on ventricular tachycardia. J Cardiovasc Electrophysiol 25(12):1350–1358

    PubMed  Google Scholar 

  20. Tse G (2016) Mechanisms of cardiac arrhythmias. J Arrhythm 32(2):75–81

    Article  PubMed  Google Scholar 

  21. Mines GR (1914) On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 8:43–52

    Google Scholar 

  22. Gough WB, Mehra R, Restivo M, Zeiler RH, el-Sherif N (1985) Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circ Res 57(3):432–442

    Article  CAS  PubMed  Google Scholar 

  23. Gaztañaga L, Marchlinski FE, Betensky BP (2012) Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed) 65(2):174–185

    Article  Google Scholar 

  24. Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41(1):9–18

    Article  CAS  PubMed  Google Scholar 

  25. Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20

    Article  PubMed  Google Scholar 

  26. El-Sherif N, Smith RA, Evans K (1981) Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res 49(1):255–265

    Article  CAS  PubMed  Google Scholar 

  27. Spach MS, Josephson ME (1994) Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol 5(2):182–209

    Article  CAS  PubMed  Google Scholar 

  28. Valderrábano M (2007) Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog Biophys Mol Biol 94(1–2):144–168

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pandit SV, Jalife J (2013) Rotors and the dynamics of cardiac fibrillation. Circ Res 112(5):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waks JW, Josephson ME (2014) Mechanisms of atrial fibrillation – reentry, rotors and reality. Arrhythm Electrophysiol Rev 3(2):90–100

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lukas A, Antzelevitch C (1996) Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res 32(3):593–603

    Article  CAS  PubMed  Google Scholar 

  32. Antzelevitch C, Yan GX (2015) J‑wave syndromes: Brugada and early repolarization syndromes. Heart Rhythm 12(8):1852–1866

    Article  PubMed  PubMed Central  Google Scholar 

  33. Josephson M (2016) Recurrent ventricular tachycardia. In: Clinical cardiac electrophysiology. Techniques and interpretation, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 441–633

    Google Scholar 

  34. Benito B, Josephson ME (2012) Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol (Engl Ed) 65(10):939–955

    Article  Google Scholar 

  35. Waldo AL, MacLean WA, Karp RB, Kouchoukos NT, James TN (1977) Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation 56(5):737–745

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Baranchuk MD FACC FRCPC FCCS.

Ethics declarations

Conflict of interest

A. Enriquez, D.S. Frankel, and A. Baranchuk declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enriquez, A., Frankel, D.S. & Baranchuk, A. Pathophysiology of ventricular tachyarrhythmias. Herzschr Elektrophys 28, 149–156 (2017). https://doi.org/10.1007/s00399-017-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0512-4

Keywords

Schlüsselwörter

Navigation