Skip to main content
Log in

Rheology of non-Brownian suspensions: a rough contact story

  • Feature Article
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper presents a compilation of experimental and numerical results that both show that particles in a suspension under shear flow come into contact through surface roughness. Accounting for those frictional contacts captures well the measured viscosity values as well as the shear-thinning observed in many concentrated non-Brownian suspensions. More specifically, the precise analysis of the asymmetric microstructure of the suspension clearly shows the role played by surface asperities in the interparticle contact. Numerical simulation results are then recalled and show the major impact of solid friction between particles on the viscosity. It is then pointed out that shear reversal experiments are a good way to assess this impact and to deduce useful information on the frictional properties of contacts. Finally, when considering together contacts via asperities and the close link between friction and rheology, a natural explanation for the shear-thinning observed in most suspensions can be proposed. According to it, as the shear stress increases, the friction coefficient decreases which leads to a viscosity decrease. This scenario first implemented in numerical simulations is verified experimentally through coupled AFM and rheometry measurements.

Graphical Abstract

The asymmetry of the shear-induced microstructure of non-Brownian and non-colloidal suspensions reflects the presence of solid contacts between particles, enabled by the surface asperities of the particles. The peculiar characteristics of these asperity contacts open the way to explain the shear-thinning observed for many suspensions by a decrease in the friction coefficient with increasing shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. In the original model of Brizmer et al (2007), the contact is between a soft sphere and a rigid flat plane while here we consider the contact between two soft materials with the same Young modulus E. This is the reason why a factor 2 is introduced into the brackets.

References

  • Archard J (1957) Elastic deformation and the laws of friction. Proceedings of the royal society of London Series A Mathematical and physical sciences 243(1233):190–205

    Google Scholar 

  • Arp P, Mason S (1977) The kinetics of flowing dispersions: Ix. doublets of rigid spheres (experimental). J Colloid Interf Sci 61(1):44–61

    Article  CAS  Google Scholar 

  • Arp P, Mason S (1977) The kinetics of flowing dispersions:Viii. doublets of rigid spheres (theoretical). J Colloid interf Sci 61(1):21–43

    Article  CAS  Google Scholar 

  • Arshad M, Maali A, Claudet C et al (2021) An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-brownian suspensions. Soft Matter 17(25):6088–6097

    Article  CAS  Google Scholar 

  • Batchelor G (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41(3):545–570

    Article  Google Scholar 

  • Blanc F (2011) Rhéologie et microstructure des suspensions concentrées non browniennes. PhD thesis, Université Nice Sophia Antipolis

  • Blanc F, Peters F, Lemaire E (2011) Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys Rev Lett 107(20):208–302

    Article  Google Scholar 

  • Blanc F, Lemaire E, Meunier A et al (2013) Microstructure in sheared non-brownian concentrated suspensions. J Rheol 57(1):273–292

    Article  CAS  Google Scholar 

  • Blanc F, D’Ambrosio E, Lobry L et al (2018) Universal scaling law in frictional non-brownian suspensions. Phys Rev Fluids 3(11):114–303

    Article  Google Scholar 

  • Blanc F, Peters F, Gillissen JJ et al (2023) Rheology of dense suspensions under shear rotation. Phys Rev Lett 130(11):118–202

    Article  Google Scholar 

  • Bossis G, Brady JF (1984) Dynamic simulation of sheared suspensions. i. general method. J Chem Phys 80(10):5141–5154

    Article  CAS  Google Scholar 

  • Bossis G, Boustingorry P, Grasselli Y et al (2017) Discontinuous shear thickening in the presence of polymers adsorbed on the surface of calcium carbonate particles. Rheologica Acta 56(5):415–430

    Article  CAS  Google Scholar 

  • Bowden FP, Tabor D (1939) The area of contact between stationary and moving surfaces. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 169(938):391–413

    Google Scholar 

  • Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157

    Article  Google Scholar 

  • Brady JF, Morris JF (1997) Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139

    Article  CAS  Google Scholar 

  • Breedveld V, van den Ende D, Bosscher M et al (2001a) Measuring shear-induced self-diffusion in a counterrotating geometry. Physical Review E 63(2):021–403

  • Breedveld V, van den Ende D, Jongschaap R et al (2001b) Shear-induced diffusion and rheology of noncolloidal suspensions: Time scales and particle displacements. J Chem Phys 114(13):5923–5936

  • Bricker JM, Butler JE (2007) Correlation between stresses and microstructure in concentrated suspensions of non-brownian spheres subject to unsteady shear flows. J Rheol 51(4):735–759

    Article  CAS  Google Scholar 

  • Brizmer V, Kligerman Y, Etsion I (2007) Elastic-plastic spherical contact under combined normal and tangential loading in full stick. Tribol Lett 25(1):61–70

    Article  Google Scholar 

  • Chatté G, Comtet J, Niguès A et al (2018) Shear thinning in non-brownian suspensions. Soft Matter 14(6):879–893

    Article  Google Scholar 

  • Chèvremont W, Chareyre B, Bodiguel H (2019) Quantitative study of the rheology of frictional suspensions: Influence of friction coefficient in a large range of viscous numbers. Phys Rev Fluids 4(6):064–302

    Article  Google Scholar 

  • Clavaud C, Bérut A, Metzger B et al (2017) Revealing the frictional transition in shear-thickening suspensions. Proceedings of the National Academy of Sciences 114(20):5147–5152

    Article  CAS  Google Scholar 

  • Comtet J, Chatté G, Niguès A et al (2017) Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat Commun 8(1):1–7

    Article  Google Scholar 

  • Da Cunha F, Hinch E (1996) Shear-induced dispersion in a dilute suspension of rough spheres. J Fluid Mech 309:211–223

    Article  Google Scholar 

  • Davis RH, Zhao Y, Galvin KP et al (2003) Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 361(1806):871–894

    Article  Google Scholar 

  • Dbouk T, Lobry L, Lemaire E (2013) Normal stresses in concentrated non-brownian suspensions. J Fluid Mech 715:239–272

    Article  CAS  Google Scholar 

  • Drazer G, Koplik J, Khusid B et al (2002) Deterministic and stochastic behaviour of non-brownian spheres in sheared suspensions. J Fluid Mech 460:307–335

    Article  CAS  Google Scholar 

  • Du B, Tsui OK, Zhang Q et al (2001) Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17(11):3286–3291

    Article  CAS  Google Scholar 

  • Ecke S, Butt HJ (2001) Friction between individual microcontacts. J Colloid Interface Sci 244(2):432–435

    Article  CAS  Google Scholar 

  • Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear flow of a suspension. J Fluid Mech 79(1):191–208

    Article  Google Scholar 

  • Edens LE, Alvarado EG, Singh A et al (2021) Shear stress dependence of force networks in 3d dense suspensions. Soft Matter 17(32):7476–7486

    Article  CAS  Google Scholar 

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–814

    Article  CAS  Google Scholar 

  • Gallier S, Lemaire E, Peters F et al (2014) Rheology of sheared suspensions of rough frictional particles. J Fluid Mech 757:514–549

    Article  CAS  Google Scholar 

  • Gallier S, Lemaire E, Lobry L et al (2016) Effect of confinement in wall-bounded non-colloidal suspensions. J Fluid Mech 799:100–127

    Article  CAS  Google Scholar 

  • Gallier S, Peters F, Lobry L (2018) Simulations of sheared dense noncolloidal suspensions: Evaluation of the role of long-range hydrodynamics. Phys Rev Fluids 3(4):042–301

    Article  Google Scholar 

  • Gao C, Kulkarni S, Morris J et al (2010) Direct investigation of anisotropic suspension structure in pressure-driven flow. Phys Rev E 81(4):041–403

    Article  Google Scholar 

  • Greenwood JA, Williamson JP (1966) Contact of nominally flat surfaces. Proceedings of the royal society of London Series A Mathematical and physical sciences 295(1442):300–319

    CAS  Google Scholar 

  • Grest GS (1999) Normal and shear forces between polymer brushes. Polymers in Confined Environments pp 149–183

  • Guazzelli É, Pouliquen O (2018) Rheology of dense granular suspensions. J Fluid Mech 852

  • Gurnon AK, Wagner NJ (2015) Microstructure and rheology relationships for shear thickening colloidal dispersions. J Fluid Mech 769:242–276

    Article  CAS  Google Scholar 

  • Guy B, Hermes M, Poon WC (2015) Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett 115(8):088–304

    Article  Google Scholar 

  • Hoyle C, Dai S, Tanner R et al (2020) Effect of particle roughness on the rheology of suspensions of hollow glass microsphere particles. J Non-Newtonian Fluid Mech 276:104–235

    Article  Google Scholar 

  • Hsiao LC, Pradeep S (2019) Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Curr Opin colloid interf Sci 43:94–112

    Article  CAS  Google Scholar 

  • Hsu CP, Ramakrishna SN, Zanini M et al (2018) Roughness-dependent tribology effects on discontinuous shear thickening. Proc Natl Acad Sci 115(20):5117–5122

    Article  CAS  Google Scholar 

  • Husband D, Gadala-Maria F (1987) Anisotropic particle distribution in dilute suspensions of solid spheres in cylindrical couette flow. J Rheol 31(1):95–110

    Article  CAS  Google Scholar 

  • Jones R (2003) From single particle afm studies of adhesion and friction to bulk flow: forging the links. Granular Matter 4(4):191–204

    Article  CAS  Google Scholar 

  • Koumakis N, Moghimi E, Besseling R et al (2015) Tuning colloidal gels by shear. Soft Matter 11(23):4640–4648

    Article  CAS  Google Scholar 

  • Kroupa M, Soos M, Kosek J (2017) Slip on a particle surface as the possible origin of shear thinning in non-brownian suspensions. Phys Chem Chem Phys 19(8):5979–5984

    Article  CAS  Google Scholar 

  • Kumar SP, Vázquez-Quesada A, Ellero M (2020) Numerical investigation of the rheological behavior of a dense particle suspension in a biviscous matrix using a lubrication dynamics method. J Non-Newtonian Fluid Mech 281:104–312

    Article  Google Scholar 

  • Le AVN, Izzet A, Ovarlez G et al (2023) Solvents govern rheology and jamming of polymeric bead suspensions. J Colloid Interf Sci 629:438–450

    Article  Google Scholar 

  • Leighton D, Acrivos A (1986) Viscous resuspension. Chem Eng Sci 41(6):1377–1384

  • Lin NY, Guy BM, Hermes M et al (2015) Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys Rev Lett 115(22):228–304

    Article  Google Scholar 

  • Lobry L, Lemaire E, Blanc F et al (2019) Shear thinning in non-brownian suspensions explained by variable friction between particles. J Fluid Mech 860:682–710

    Article  CAS  Google Scholar 

  • Mari R, Seto R, Morris JF et al (2014) Shear thickening, frictionless and frictional rheologies in non-brownian suspensions. J Rheol 58(6):1693–1724

    Article  CAS  Google Scholar 

  • Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data, vol. 1, Springer

  • Metzger B, Butler JE (2010) Irreversibility and chaos: Role of long-range hydrodynamic interactions in sheared suspensions. Phys Rev E 82(5):051–406

    Article  Google Scholar 

  • Metzger B, Pham P, Butler JE (2013) Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys Rev E 87(5):052–304

    Article  Google Scholar 

  • Moratille Y, Arshad M, Cohen C et al (2022) Cross-linked polymer microparticles with tunable surface properties by the combination of suspension free radical copolymerization and click chemistry. J Colloid Interf Sci 607:1687–1698

    Article  CAS  Google Scholar 

  • More RV, Ardekani AM (2020) Effect of roughness on the rheology of concentrated non-brownian suspensions: A numerical study. J Rheol 64(1):67–80

    Article  CAS  Google Scholar 

  • More RV, Ardekani AM (2021) Unifying disparate rate-dependent rheological regimes in non-brownian suspensions. Phys Rev E 103(6):062–610

    Article  Google Scholar 

  • Papadopoulou A, Gillissen JJ, Wilson HJ, et al (2020) On the shear thinning of non-brownian suspensions: friction or adhesion? J Non-Newtonian Fluid Mech p 104298

  • Park HO, Bricker JM, Roy MJ et al (2011) Rheology of oscillating suspensions of noncolloidal spheres at small and large accumulated strains. Phys Fluids 23(1):013–302

    Article  Google Scholar 

  • Parsi F, Gadala-Maria F (1987) Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J Rheol 31(8):725–732

    Article  CAS  Google Scholar 

  • Peters F, Ghigliotti G, Gallier S et al (2016) Rheology of non-brownian suspensions of rough frictional particles under shear reversal: A numerical study. J Rheol 60(4):715–732

    Article  CAS  Google Scholar 

  • Pham P, Metzger B, Butler JE (2015) Particle dispersion in sheared suspensions: Crucial role of solid-solid contacts. Phys Fluids 27(5):051–701

    Article  Google Scholar 

  • Rampall I, Smart JR, Leighton DT (1997) The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J Fluid Mech 339:1–24

    Article  CAS  Google Scholar 

  • Richards JA, Guy BM, Blanco E et al (2020) The role of friction in the yielding of adhesive non-brownian suspensions. J Rheol 64(2):405–412

    Article  CAS  Google Scholar 

  • Seto R, Mari R, Morris JF et al (2013) Discontinuous shear thickening of frictional hard-sphere suspensions. Phys Rev Lett 111(21):218–301

    Article  Google Scholar 

  • Sierou A, Brady JF (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46(5):1031–1056

    Article  CAS  Google Scholar 

  • Singh A, Nott PR (2000) Normal stresses and microstructure in bounded sheared suspensions via stokesian dynamics simulations. J Fluid Mech 412:279–301

    Article  CAS  Google Scholar 

  • Singh A, Mari R, Denn MM et al (2018) A constitutive model for simple shear of dense frictional suspensions. J Rheol 62(2):457–468

  • Smart JR, Leighton DT Jr (1989) Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Physics of Fluids A: Fluid Dynamics 1(1):52–60

    Article  CAS  Google Scholar 

  • Tanner RI, Dai S (2016) Particle roughness and rheology in noncolloidal suspensions. J Rheol 60(4):809–818

    Article  CAS  Google Scholar 

  • Tanner RI, Ness C, Mahmud A et al (2018) A bootstrap mechanism for non-colloidal suspension viscosity. Rheologica Acta 57(10):635–643

    Article  CAS  Google Scholar 

  • Tomari K, Tonogai S, Harada T et al (1990) The v-notch at weld lines in polystyrene injection moldings. Polymer Eng Sci 30(15):931–936

    Article  CAS  Google Scholar 

  • Vazquez-Quesada A, Tanner RI, Ellero M (2016) Shear thinning of noncolloidal suspensions. Physical review letters 117(10):108–001

    Article  Google Scholar 

  • Vázquez-Quesada A, Mahmud A, Dai S, et al (2017) Investigating the causes of shear-thinning in non-colloidal suspensions: Experiments and simulations. J Non-Newtonian Fluid Mech 248:1–7

  • Vinogradova OI, Yakubov GE (2006) Surface roughness and hydrodynamic boundary conditions. Phys Rev E 73(4):045–302

    Article  Google Scholar 

  • Wiederseiner S, Andreini N, Epely-Chauvin G et al (2011) Refractive-index and density matching in concentrated particle suspensions: a review. Exp Fluids 50(5):1183–1206

    Article  Google Scholar 

  • Wilson HJ (2005) An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J Fluid Mech 534:97–114

    Article  Google Scholar 

  • Wilson HJ, Davis RH (2002) Shear stress of a monolayer of rough spheres. J Fluid Mech 452:425–441

  • Wyart M, Cates ME (2014) Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys Rev Lett 112(9):098-302

    Article  Google Scholar 

  • Yeo K, Maxey MR (2010) Dynamics of concentrated suspensions of non-colloidal particles in couette flow. J Fluid Mech 649:205–231

    Article  CAS  Google Scholar 

  • Yeo K, Maxey MR (2010) Ordering transition of non-brownian suspensions in confined steady shear flow. Phys Rev E 81(5):051–502

    Article  Google Scholar 

  • Yeo K, Maxey MR (2010) Simulation of concentrated suspensions using the force-coupling method. J Comput Phys 229(6):2401–2421

    Article  CAS  Google Scholar 

  • Yeo K, Maxey MR (2011) Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow. J Fluid Mech 682:491–518

    Article  Google Scholar 

  • Zarraga IE, Hill DA, Leighton DT Jr (2000) The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids. J Rheol 44(2):185–220

    Article  CAS  Google Scholar 

  • Zhou JZ, Uhlherr PH, Luo FT (1995) Yield stress and maximum packing fraction of concentrated suspensions. Rheologica acta 34(6):544–561

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Duncan Gilbert for fruitful discussions and for providing the shear reversal data displayed in Fig. 6. This work was supported by the French National Agency (ANR) under the program Blanc AMARHEO (ANR-18-CE06-0009-01)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Lemaire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Frédéric Blanc, Cyrille Claudet, Stany Gallier, Laurent Lobry, and François Peters contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, E., Blanc, F., Claudet, C. et al. Rheology of non-Brownian suspensions: a rough contact story. Rheol Acta 62, 253–268 (2023). https://doi.org/10.1007/s00397-023-01394-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-023-01394-z

Keywords

Navigation