Skip to main content
Log in

Rheological properties and swelling behavior of nanocomposite preformed particle gels based on starch-graft-polyacrylamide loaded with nanosilica

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Gel treatment using preformed particle gels is a technique applied in mature reservoirs to control excess water production. In this study, a novel nanocomposite gel was proposed and optimized for better performance in high-salinity and high-temperature conditions of oilfields. Gels were prepared by grafting copolymerization of crosslinked polyacrylamide onto starch (starch-g-CPAM) and loaded with silica nanoparticles. Different tests were performed on nanocomposite prepared particle gels (NCPPGs) to investigate the effect of silica content (2–10 wt%), temperature, and brine concentration on network structure, swelling, and mechanical behavior of the gels. The NCPPG with 5 wt% showed a superior swelling ratio. Rheological studies depicted that nanosilica could increase the mechanical strength of the NCPPGS in high temperature and high salinity brines (90 °C and 225,000 ppm) up to 900 Pa. Finally, loading nanosilica up to 5 wt. % into the NCPPG resulted in capable mechanical stability and water uptake under harsh conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NCPPG:

Nanocomposite preformed particle gel

AM:

Acrylamide

MBA:

N,N-methylene bisacrylamide

APS:

Ammonium persulfate

NaCl:

Sodium chloride

DI:

Deionized

Fw:

Formation water

Sw:

Sea water

S.R (v/v):

Swelling ratio

Vs (ml):

Volume of swollen gel

Vd (ml):

Volume of dry gel

γ(%):

Shear strain

ω (Rad/s):

Angular frequency

G′ (Pa):

Storage modulus

G″ (Pa):

Loss modulus

tan (δ):

Loss factor

η* (Pa.s):

Complex viscosity

References

  • Aalaie J, Youssefi M (2012) Study on the dynamic rheometry and swelling properties of the polyacrylamide/laponite nanocomposite hydrogels in electrolyte media. J Macromol Sci B 51(6):1027–1040

    Article  CAS  Google Scholar 

  • Abdulbaki M, Huh C, Sepehrnoori K, Delshad M, Varavei A (2014) A critical review on use of polymer microgels for conformance control purposes. J Petrol Sci Eng 122:741–753

    Article  CAS  Google Scholar 

  • Adibnia V, Taghavi SM, Hill RJ (2017) Roles of chemical and physical crosslinking on the rheological properties of silica-doped polyacrylamide hydrogels. Rheol Acta 56(2):123–134

    Article  CAS  Google Scholar 

  • Albonico P, Lockhart TP (1993) Divalent ion-resistant polymer gels for high-temperature applications: syneresis inhibiting additives. In SPE International Symposium on Oilfield Chemistry. Soc Petrol Eng

  • Alfarge DK, Wei M, Bai B (2017) Numerical simulation study of factors affecting relative permeability modification for water-shutoff treatments. Fuel 207:226–239

    Article  CAS  Google Scholar 

  • Aqcheli F, Salehi MB, Pahlevani H, Taghikhani V (2020) Rheological properties and the micromodel investigation of nanosilica gel-reinforced preformed particle gels developed for improved oil recovery. J Petrol Sci Eng 192:107258

    Article  CAS  Google Scholar 

  • Bao X, Yu L, Shen S, Simon GP, Liu H, Chen L (2019) How rheological behaviors of concentrated starch affect graft copolymerization of acrylamide and resultant hydrogel. Carbohydr Polym 219:395–404

    Article  CAS  Google Scholar 

  • Bao X, Yu L, Simon GP, Shen S, Xie F, Liu H, Zhong L (2018) Rheokinetics of graft copolymerization of acrylamide in concentrated starch and rheological behaviors and microstructures of reaction products. Carbohydr Polym 192:1–9

    Article  CAS  Google Scholar 

  • Bhadani R, Mitra UK (2016) Synthesis and studies on water swelling behaviour of polyacrylamide hydrogels. Macromol Symp 369(1):30–34

    Article  CAS  Google Scholar 

  • Chang WZ, Leong YK (2014) Ageing and collapse of bentonite gels—effects of Li, Na K and Cs Ions. Rheol Acta 53(2):109–122

    Article  CAS  Google Scholar 

  • Chaudhuri SD, Mandal A, Dey A, Chakrabarty D (2020) Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Appl Clay Sci 185:105405

    Article  CAS  Google Scholar 

  • Cheng WM, Hu XM, Zhao YY, Wu MY, Hu ZX, Yu XT (2017) Preparation and swelling properties of poly (acrylic acid-co-acrylamide) composite hydrogels. e-Polymers 17(1):95–106

  • Dijvejin ZA, Ghaffarkhah A, Sadeghnejad S, Sefti MV (2019) Effect of silica nanoparticle size on the mechanical strength and wellbore plugging performance of SPAM/chromium (III) acetate nanocomposite gels. Polym J 51(7):693–707

    Article  CAS  Google Scholar 

  • El-Hoshoudy AN, Desouky SM, Attia AM (2018) Synthesis of starch functionalized sulfonic acid co-imidazolium/silica composite for improving oil recovery through chemical flooding technologies. Int J Biol Macromol 118:1614–1626

    Article  CAS  Google Scholar 

  • El-Karsani KS, Al-Muntasheri GA, Sultan AS, Hussein IA (2015) Gelation of a water-shutoff gel at high pressure and high temperature: Rheological investigation. SPE J 20(05):1–103

    Article  Google Scholar 

  • Elsharafi MO, Bai B (2012) Effect of weak preformed particle gel on unswept oil zones/areas during conformance control treatments. Ind Eng Chem Res 51(35):11547–11554

    Article  CAS  Google Scholar 

  • Ghannam MT, Esmail MN (1998) Rheological properties of aqueous polyacrylamide solutions. J Appl Polym Sci 69(8):1587–1597

    Article  CAS  Google Scholar 

  • Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38

    Article  CAS  Google Scholar 

  • Goudarzi A, Zhang H, Varavei A, Taksaudom P, Hu Y, Delshad M, ... Sepehrnoori K (2015) A laboratory and simulation study of preformed particle gels for water conformance control. Fuel 140:502-513

  • Gu S, Cheng G, Yang T, Ren X, Gao G (2017) Mechanical and rheological behavior of hybrid cross-linked polyacrylamide/cationic micelle hydrogels. Macromol Mater Eng 302(12):1700402

    Article  CAS  Google Scholar 

  • Hu Z, Haruna M, Gao H, Nourafkan E, Wen D (2017) Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles. Ind Eng Chem Res 56(12):3456–3463

    Article  CAS  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107(1–3):51–65

    Article  CAS  Google Scholar 

  • Jia H, Ren Q, Li YM, Ma XP (2016) Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: gelation performance and application recommendations. Petroleum 2(1):90–97

    Article  Google Scholar 

  • Karimi S, Kazemi S, Kazemi N (2016) Syneresis measurement of the HPAM-Cr (III) gel polymer at different conditions: an experimental investigation. J Nat Gas Sci Eng 34:1027–1033

    Article  CAS  Google Scholar 

  • Kowalski G, Ptaszek P, Kuterasiński Ł (2020) Swelling of hydrogels based on carboxymethylated starch and poly (acrylic acid): nonlinear rheological approach. Polymers 12(11):2564

    Article  CAS  Google Scholar 

  • Lenji MA, Haghshenasfard M, Sefti MV, Salehi MB (2018) Experimental study of swelling and rheological behavior of preformed particle gel used in water shutoff treatment. J Petrol Sci Eng 169:739–747

    Article  CAS  Google Scholar 

  • Li A, Liu R, Wang A (2005) Preparation of starch-graft-poly (acrylamide)/attapulgite superabsorbent composite. J Appl Polym Sci 98(3):1351–1357

    Article  CAS  Google Scholar 

  • Mitra M, Mahapatra M, Dutta A, Roy JSD, Karmakar M, Deb M, ... Singha NR (2019) Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb (II), Hg (II), dyes, vitamin-C, and p-nitrophenol. J Hazard Mater 369:746-762

  • Muller G, Fenyo JC, Selegny E (1980) High molecular weight hydrolyzed polyacrylamides. III. Effect of temperature on chemical stability. J Appl Polym Sci 25(4):627–633

    Article  CAS  Google Scholar 

  • Nasr-El-Din HA, Hawkins BF, Green KA (1991) Viscosity behavior of alkaline, surfactant, polyacrylamide solutions used for enhanced oil recovery. In SPE International Symposium on Oilfield Chemistry. Soc Petrol Eng

  • Okay O, Oppermann W (2007) Polyacrylamide− clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40(9):3378–3387

    Article  CAS  Google Scholar 

  • Olad A, Doustdar F, Gharekhani H (2018) Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: preparation and swelling kinetic study. Carbohydr Polym 200:516–528

    Article  CAS  Google Scholar 

  • Olad A, Doustdar F, Gharekhani H (2020) Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf A: Physicochem Eng Aspects 601:124962

    Article  CAS  Google Scholar 

  • Olad A, Naseri B (2010) Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite. Progr Organ Coat 67(3):233–238

    Article  CAS  Google Scholar 

  • Pereira KA, Aguiar KL, Oliveira PF, Vicente BM, Pedroni LG, Mansur CR (2020) Synthesis of hydrogel nanocomposites based on partially hydrolyzed polyacrylamide, polyethyleneimine, and modified clay. ACS Omega 5(10):4759–4769

    Article  CAS  Google Scholar 

  • Ponsubha S, Jaiswal AK (2020) Effect of interpolymer complex formation between chondroitin sulfate and chitosan-gelatin hydrogel on physico-chemical and rheological properties. Carbohydr Polym 238:116179

    Article  CAS  Google Scholar 

  • Pu J, Bai B, Alhuraishawy A, Schuman T, Chen Y, Sun X (2018) A novel re-crosslinkable preformed particle gel for conformance control in extreme heterogeneous reservoirs. In SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Salehi MB, Moghadam AM, Marandi SZ (2019) Polyacrylamide hydrogel application in sand control with compressive strength testing. Petrol Sci 16(1):94–104

    Article  CAS  Google Scholar 

  • Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678

    Article  CAS  Google Scholar 

  • Sang Q, Li Y, Yu L, Li Z, Dong M (2014) Enhanced oil recovery by branched-preformed particle gel injection in parallel-sandpack models. Fuel 136:295–306

    Article  CAS  Google Scholar 

  • Seright RS (1991) Impact of dispersion on gel placement for profile control. SPE Reserv Eng 6(03):343–352

    Article  CAS  Google Scholar 

  • Simjoo M, VafaieSefti M, DadvandKoohi A, Hasheminasab R, Sajadian V (2007) Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions. Iran J Chem Chem Eng (IJCCE) 26(4):99–108

    CAS  Google Scholar 

  • Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly (AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21

    Article  CAS  Google Scholar 

  • Singh R, Mahto V (2016) Preparation, characterization and coreflood investigation of polyacrylamide/clay nanocomposite hydrogel system for enhanced oil recovery. J Macromol Sci B 55(11):1051–1067

    Article  CAS  Google Scholar 

  • Singh R, Mahto V (2017) Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery. Petrol Sci 14(4):765–779

    Article  CAS  Google Scholar 

  • Siyamak S, Laycock B, Luckman P (2020) Synthesis of starch graft-copolymers via reactive extrusion: process development and structural analysis. Carbohydr Polym 227:115066

    Article  CAS  Google Scholar 

  • Spagnol C, Rodrigues FH, Neto AG, Pereira AG, Fajardo AR, Radovanovic E, ... Muniz EC (2012) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454-463

  • Sun F, Lin M, Dong Z, Zhang J, Wang C, Wang S, Song F (2015) Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids. J Colloid Interf Sci 458:45–52

    Article  CAS  Google Scholar 

  • Sydansk RD, Moore PE (1992) Gel conformance treatments increase oil production in Wyoming. Oil Gas J (U S) 90(3)

  • Tam KC, Tiu C (1989) Steady and dynamic shear properties of aqueous polymer solutions. J Rheol 33(2):257–280

    Article  CAS  Google Scholar 

  • Tongwa P, Bai B (2014) Degradable nanocomposite preformed particle gel for chemical enhanced oil recovery applications. J Petrol Sci Eng 124:35–45

    Article  CAS  Google Scholar 

  • Uranta K, Gomari SR, Russell P, Hamad F (2018) Determining safe maximum temperature point (SMTP) for polyacrylamide polymer (PAM) in saline solutions. J Oil Gas Petrochem Sci 1(1)

  • Wang L, Geng J, Bai B (2018) Highly deformable nano-cross-linker-bridged nanocomposite hydrogels for water management of oil recovery. Energy Fuels 32(3):3068–3076

    Article  CAS  Google Scholar 

  • Ye L, Tang Y, Qiu D (2014) Enhance the mechanical performance of polyacrylamide hydrogel by aluminium-modified colloidal silica. Colloids Surf A Physicochem Eng Asp 447:103–110

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Li L, Zhang S, Wu R (2015) Preparation and swelling behaviors of a high temperature resistant superabsorbent using tetraallylammonium chloride as crosslinking agent. React Funct Polym 87:15–21

    Article  CAS  Google Scholar 

  • Zhao G, Dai C, Chen A, Yan Z, Zhao M (2015) Experimental study and application of gels formed by nonionic polyacrylamide and phenolic resin for in-depth profile control. J Petrol Sci Eng 135:552–560

    Article  CAS  Google Scholar 

  • Zhao G, You Q, Tao J, Gu C, Aziz H, Ma L, Dai C (2018) Preparation and application of a novel phenolic resin dispersed particle gel for in-depth profile control in low permeability reservoirs. J Petrol Sci Eng 161:703–714

    Article  CAS  Google Scholar 

  • Zhou B, Kang W, Yang H, Zhu T, Zhang H, Li X, Sarsenbek T (2021) Preparation and properties of an acid-resistant preformed particle gel for conformance control. J Petrol Sci Eng 197:107964

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353(1):116–123

    Article  CAS  Google Scholar 

  • Zhu B, Ma D, Wang J, Zhang S (2015) Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydr Polym 133:448–455

    Article  CAS  Google Scholar 

  • Zhu D, Bai B, Hou J (2017) Polymer gel systems for water management in high-temperature petroleum reservoirs: a chemical review. Energy Fuels 31(12):13063–13087

    Article  CAS  Google Scholar 

  • Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D, Zhang R (2012) Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr Polym 87(2):1583–1588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Hassanajili.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloochestanzadeh, S., Hassanajili, S. & Escrochi, M. Rheological properties and swelling behavior of nanocomposite preformed particle gels based on starch-graft-polyacrylamide loaded with nanosilica. Rheol Acta 60, 571–585 (2021). https://doi.org/10.1007/s00397-021-01287-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01287-z

Keywords

Navigation