Skip to main content
Log in

Oscillatory rheometry to characterize polymer flocculation of fluid fine tailings

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Polymeric flocculation represents a widely used approach to accelerate consolidation of fluid fine tailings (FFTs), generated by mining bitumen from oil sands. Questions remain, however, regarding the structure produced by polymer addition, and its evolution over time. Dynamic strain amplitude sweep tests on undisturbed specimens show that flocculation leads to an improvement in stiffness and strength, delays yield, and modifies the damping properties. These effects are attributed to the percolated network formed as the polymer aggregates mineral particles, and further bridges these aggregates. This structure dominates the response of the material and controls the solid-to-fluid transition, which has characteristics typical of a highly networked system. Increasing disturbance causes rapid and irreversible degradation of the response, evidence of the sensitivity of the structure. The data for FFTs from two tailings ponds demonstrate the uniqueness of these materials with differences observed in the response before and after flocculation, and in the water release process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alberta Energy Regulator (2019) State of fluid tailings management for mineable oil sands, 2018.https://www.aer.ca/documents/oilsands/2018-State-Fluid-Tailings-Management-Mineable-OilSands.pdf. Accessed 7 July 2020

  • Aldaeef AA, Simms PH (2019) Influence of pipeline transport on sedimentation and consolidation of flocculated Fluid Fine Tailings (fFFT). In: Proceedings of GeoSt.Johns 2019, St. Johns, Canada.

  • Aldaeef AA, Simms PH (2020) Evaluation of polymer feed rate, polymer dose, and mixing duration for flocculation optimization of clayey tailings with various solid contents. In: GeoVirtual 2020 – Resilience and Innovation, September 14–16.

  • Ábrányi Á, Százdi L, Pukánszky B et al (2006) Formation and detection of clay network structure in poly(propylene)/layered silicate nanocomposites. Macromol Rapid Commun 27:132–135. https://doi.org/10.1002/marc.200500687

    Article  CAS  Google Scholar 

  • Adeyinka OB, Samiei S, Xu Z, Masliyah JH (2009) Effect of particle size on the rheology of athabasca clay suspensions. Can J Chem Eng 87:422–434. https://doi.org/10.1002/cjce.20168

    Article  CAS  Google Scholar 

  • Allen EW (2008) Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci 7:123–138. https://doi.org/10.1139/S07-038

    Article  CAS  Google Scholar 

  • Angle CW, Zrobok R, Hamza HA (1993) Surface properties and elasticity of oil-sands-derived clays found in a sludge pond. Appl Clay Sci 7:455–470. https://doi.org/10.1016/0169-1317(93)90015-S

    Article  Google Scholar 

  • Bara B, Yuan S, Siman R, Gomez C (2013) Oil sands fine tailings flocculation using dynamic mixing. U.S. Patent Application 13/620,121.

  • Beier N, Wilson W, Dunmola A, Sego D (2013) Impact of flocculation-based dewatering on the shear strength of oil sands fine tailings. Can Geotech J 50:1001–1007. https://doi.org/10.1139/cgj-2012-0262

    Article  CAS  Google Scholar 

  • Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  • Bolto BA (1995) Soluble polymers in water purification. Prog Polym Sci 20:987–1041

    Article  CAS  Google Scholar 

  • Botha L, Soares JBP (2015) The influence of tailings composition on flocculation. Can J Chem Eng 93:1514–1523. https://doi.org/10.1002/cjce.22241

    Article  CAS  Google Scholar 

  • Boxill L, Costine A, Fawell P, et al (2018) Evaluating the shear resistance and ultimate dewatering performance of polymer-treated tailings. In: Proceedings of the 21st International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, pp 277–290

  • Carrier V, Petekidis G (2009) Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J Rheol (n Y N y) 53:245–273. https://doi.org/10.1122/1.3045803

    Article  CAS  Google Scholar 

  • Chen Q, Liu Q (2019) Bitumen coating on oil sands clay minerals: a review. Energy Fuels 33:5933–5943

    Article  CAS  Google Scholar 

  • COSIA (2016) Canada’s Oil Sands Innovation Alliance, Unified Fines Method for minus 44 micron material and for Particle Size Distribution, Compiled by COSIA Fines Measurement Working Group. Calgary, AB, Canada

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. John Wiley and Sons

  • Demoz A (2015) Scaling inline static mixers for flocculation of oil sand mature fine tailings. AIChE J 61:4402–4411. https://doi.org/10.1002/aic.14958

    Article  CAS  Google Scholar 

  • Demoz A, Mikula RJ (2012) Role of mixing energy in the flocculation of mature fine tailings. J Environ Eng (united States) 138:129–136. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000457

    Article  CAS  Google Scholar 

  • Derakhshandeh B (2016) Kaolinite suspension as a model fluid for fluid dynamics studies of fluid fine tailings. Rheol Acta 55:749–758. https://doi.org/10.1007/s00397-016-0949-0

    Article  CAS  Google Scholar 

  • Dong J, Lin CL, Miller JD (2018) Simulated permeability of flocculated kaolinite sediments from X-ray tomographic images. Miner Metall Process 35:13–18. https://doi.org/10.19150/mmp.8053

  • Govedarica A, Trifkovic M (2016) Polymer treatment of oil sands tailings: confocal microscopy and rheological study of the consolidation process. In: International Oil Sands Tailings Conference, December 4–7, 2016. Lake Louise, Alberta, Canada

  • Govedarica A, Molina Bacca E, Trifkovic M (2020) Structural investigation of tailings flocculation and consolidation via quantitative 3D dual fluorescence/reflectance confocal microscopy. J Colloid Interface Sci 571:194–204

    Article  CAS  Google Scholar 

  • Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of Data with a Model of Emulsion of Viscoelastic Liquids. Macromolecules 26:320–329. https://doi.org/10.1021/ma00054a011

    Article  CAS  Google Scholar 

  • Gregory J (1988) Polymer adsorption and flocculation in sheared suspensions. Colloids Surf 31:231–253. https://doi.org/10.1016/0166-6622(88)80196-3

    Article  CAS  Google Scholar 

  • Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci 169:1–12

    Article  CAS  Google Scholar 

  • Halder BK, Palomino AM, Hicks J (2018) Influence of polyacrylamide conformation on fabric of “tunable” kaolin–polymer composite. Can Geotech J 55:1295–1312. https://doi.org/10.1139/cgj-2017-0200

    Article  CAS  Google Scholar 

  • Huang P-T (2013) Rheological properties and lubrication performance of clay-based drilling fluids for trenchless technologies

  • Hyndman A, Sawatsky L, McKenna G, Vandenberg J (2018) Fluid fine tailings processes: disposal, capping, and closure alternatives. In: International Oil Sands Tailings Conference, December 9–12, 2018. Edmonton, Alberta, Canada

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107:51–65. https://doi.org/10.1016/S0377-0257(02)00141-6

    Article  CAS  Google Scholar 

  • Hyun K, Wilhelm M, Klein CO et al (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  CAS  Google Scholar 

  • Johnston CT, Sasar M, Santagata M, et al (2016) Polymer-MFT interactions: from surface chemistry to rheology. In: International Oil Sands Tailings Conference, December 4–7, 2016. Lake Louise, Alberta, Canada

  • Kaminsky H, Etsell TH, Ivey DG, Omotoso O (2006) Fundamental particle size of clay minerals in Athabasca oil sands tailings. Clay Sci 12:217–222

    CAS  Google Scholar 

  • Kaminsky H, Omotoso O (2016) Variability in fluid fine tailings. In: International Oil Sands Tailings Conference, December 4–7, 2016. Lake Louise, Alberta, Canada

  • Kaminsky H (2014) Demystifying the methylene blue index. In: 4th International Oil Sands Tailings Conference. Lake Louise, Alberta, Canada, pp 221–229

  • Kaminsky HAW, Etsell TH, Ivey DG, Omotoso O (2009) Distribution of clay minerals in the process streams produced by the extraction of bitumen from athabasca oil sands. Can J Chem Eng 87:85–93. https://doi.org/10.1002/cjce.20133

    Article  CAS  Google Scholar 

  • Kessick MA (1979) Structure and properties of oil sands clay tailings. J Can Pet Technol 49–52. https://doi.org/10.2118/79-01-01

  • Khattak M, Simms P, Salam MA (2018) Image processing for quantitative analysis of fluid fine tailing’s, dosed with anionic polyamide based flocculant. In: GeoEdmonton, September 23 - 26, 2018. Edmonton, Alberta, Canada

  • Laird A (1997) Bonding between polyacrylamide and clay mineral surfaces. Soil Sci 162:826–832

    Article  CAS  Google Scholar 

  • Liu J, Gaikwad R, Hande A et al (2015) Mapping and quantifying surface charges on clay nanoparticles. Langmuir 31:10469–10476. https://doi.org/10.1021/acs.langmuir.5b02859

    Article  CAS  Google Scholar 

  • MacKinnon M, Sethi A (1993) A comparison of the physical and chemical properties of the tailings ponds at the Syncrude and Suncor oil sands plants. In: Proceedings of Our Petroleum Future Conference. Alberta Oil Sands Technology and Research Authority (AOSTRA), Edmonton, Alta.

  • MacKinnon MD, Matthews JG, Shaw WH, Cuddy RG (2001) Water quality issues associated with Composite Tailings (CT) technology for managing oil sands tailings. Int J Surf Mining, Reclam Environ 15:235–256. https://doi.org/10.1076/ijsm.15.4.235.7416

    Article  CAS  Google Scholar 

  • Manley S, Davidovitch B, Davies NR et al (2005) Time-dependent strength of colloidal gels. Phys Rev Lett 95:048302. https://doi.org/10.1103/PhysRevLett.95.048302

    Article  CAS  Google Scholar 

  • McFarlane AJ, Addai-Mensah J, Bremmell K (2005) Rheology of flocculated kaolinite dispersions. Korea Aust Rheol J 17:181–190

    Google Scholar 

  • Mercier PHJ, Ng S, Moran K et al (2012) Colloidal clay gelation: relevance to current oil sands operations. Pet Sci Technol 30:915–923. https://doi.org/10.1080/10916466.2010.495959

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148:214–227

    Article  Google Scholar 

  • Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. Europhys Lett 75:915–921. https://doi.org/10.1209/epl/i2006-10203-9

    Article  CAS  Google Scholar 

  • Mizani S, Simms P, Wilson W (2017) Rheology for deposition control of polymer-amended oil sands tailings. Rheol Acta 56:623–634. https://doi.org/10.1007/s00397-017-1015-2

    Article  CAS  Google Scholar 

  • Omotoso O, Mikula R, Urquhart S, et al (2006) Characterization of clays from poorly processing oil sands using synchrotron techniques. Clay Sci 12:88–93. https://doi.org/10.11362/jcssjclayscience1960.12.Supplement2_88

  • Omotoso OE, Mikula RJ (2004) High surface areas caused by smectitic interstratification of kaolinite and illite in Athabasca oil sands. Appl Clay Sci 25:37–47. https://doi.org/10.1016/j.clay.2003.08.002

    Article  CAS  Google Scholar 

  • Osacky M, Geramian M, Dyar MD et al (2013) Characterisation of petrologic end members of oil sands from the athabasca region, Alberta, Canada. Can J Chem Eng 91:1402–1415. https://doi.org/10.1002/cjce.21860

    Article  CAS  Google Scholar 

  • Osacky M, Geramian M, Liu Q et al (2014) Surface properties of petrologic end-members from alberta oil sands and their relationship with mineralogical and chemical composition. Energy Fuels 28:934–944. https://doi.org/10.1021/ef402150z

    Article  CAS  Google Scholar 

  • OSTC (2012) Technical guide for fluid fine tailings management. In: Oil Sands Tailings Consortium (OSTC), 30 August. Calgary, Alta.

  • Pathak R (2010) Test method for methylene blue test slurry procedure, Minerals Standard Laboratory Procedure, SGS Canada Inc., SLP-MIN-018

  • Pendharker S, Shende S, Jacob Z, Nazemifard N (2017) Three-dimensional optical tomography of bitumen and clay association in oil sands tailings. Fuel 207:262–267. https://doi.org/10.1016/j.fuel.2017.06.107

    Article  CAS  Google Scholar 

  • Sadighian A, Revington A, Kaminsky H, Moyls B, Li Y, Omotoso O (2018) A new protocol to assess the quality of tailings flocculation/coagulation: a collaboration to improve tailings treatment at Suncor Energy. IOSTC: Edmonton, AB, CanadaSalam AM, Örmeci B, Simms PH (2016) Determination of the optimum polymer dose for dewatering of oil sands tailings using UV-vis spectrophotometry. J Pet Sci Eng 147:68–76. https://doi.org/10.1016/j.petrol.2016.05.004

    Article  CAS  Google Scholar 

  • Salam AM, Örmeci B, Simms PH (2021) Determination of optimum polymer dosage for dewatering of oil sands tailings using torque rheology. J Pet Sci Eng 197. https://doi.org/10.1016/j.petrol.2020.107986

  • Santagata M, Dalmazzo D, Santagata E (2008) Deformation behavior of clay-water suspensions from rheological tests. 4th International Symposium on Deformation Characteristics of Geomaterials (IS-Atlanta). IOS Press, Netherlands, pp 453–459

    Google Scholar 

  • Sharma S, Lin CL, Miller JD (2017) Multi-scale features including water content of polymer induced kaolinite floc structures. Miner Eng 101:20–29. https://doi.org/10.1016/j.mineng.2016.11.003

    Article  CAS  Google Scholar 

  • Shende SS, Pendharker S, Jacob Z, Nazemifard N (2016) Total internal reflection fluorescence microscopy to investigate the distribution of residual bitumen in oil sands tailings. Energy Fuels 30:5537–5546. https://doi.org/10.1021/acs.energyfuels.6b00745

    Article  CAS  Google Scholar 

  • Sobkowicz JC (2011) History and developments in the treatment of oil sands fine tailings. In: Tailings and Mine Waste’10 - Proceedings of the 14th International Conference on Tailings and Mine Waste. pp 11–30

  • Sobkowicz JC (2013) Developments in treating and dewatering oil sand tailings. In: Proceedings of the 16th International Seminar on Paste and Thickened Tailings. Edited by RJ Jewell, AB Fourie, and J. Pimenta. Belo Horizonte. pp 17–20

  • Sohn JI, Lee CH, Lim ST et al (2003) Viscoelasticity and relaxation characteristics of polystyrene/clay nanocomposite. J Mater Sci 38:1849–1852. https://doi.org/10.1023/A:1023527724685

    Article  CAS  Google Scholar 

  • Vajihinejad V, Soares JB (2018) Monitoring polymer flocculation in oil sands tailings: a population balance model approach. Chem Eng J 346:447–457. https://doi.org/10.1016/j.cej.2018.04.039

    Article  CAS  Google Scholar 

  • Wang S, Alagha L, Xu Z (2014) Adsorption of organic-inorganic hybrid polymers on kaolin from aqueous solutions. Colloids Surfaces A Physicochem Eng Asp 453:13–20. https://doi.org/10.1016/j.colsurfa.2014.03.069

    Article  CAS  Google Scholar 

  • Watson P, Ph D, Fenderson T et al (2011) Breakage and reformation of flocs in oil sands tailings slurries. Tailings Mine Waste 10(14288/1):0107719

    Google Scholar 

  • Wells P, Revington A, Omotoso O (2011) Mature fine tailings drying — technology update. In: Jewell R, Fourie A (eds) Proceedings of the 14th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, pp 155–166

  • Yan B, Han L, Xiao H et al (2019) Rapid dewatering and consolidation of concentrated colloidal suspensions: mature fine tailings via self-healing composite hydrogel. ACS Appl Mater Interfaces 11:21610–21618. https://doi.org/10.1021/acsami.9b05692

    Article  CAS  Google Scholar 

  • Yao Y (2016) Dewatering behaviour of fine oil sands tailings: an experimental study. Delft University of Technology

  • Zbik MS, Smart RSC, Morris GE (2008) Kaolinite flocculation structure. J Colloid Interface Sci 328:73–80. https://doi.org/10.1016/j.jcis.2008.08.063

    Article  CAS  Google Scholar 

  • Zheng Q, Du M, Yang B, Wu G (2001) Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer (guildf) 42:5743–5747. https://doi.org/10.1016/S0032-3861(01)00025-8

    Article  CAS  Google Scholar 

  • Zhu Y, Tan X, Liu Q (2017) Dual polymer flocculants for mature fine tailings dewatering. Can J Chem Eng 95:3–10. https://doi.org/10.1002/cjce.22628

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge funding from Canada’s Oil Sands Innovation Alliance (COSIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Santagata.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasar, M., Johnston, C.T., Kaminsky, H. et al. Oscillatory rheometry to characterize polymer flocculation of fluid fine tailings. Rheol Acta 60, 457–479 (2021). https://doi.org/10.1007/s00397-021-01276-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01276-2

Keywords

Navigation