Skip to main content
Log in

Linear and nonlinear rheology of oil in liquid crystal emulsions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

While the majority of experimental and numerical studies focus on yield stress fluids with short-range repulsive interactions, the effect of long-range interaction is rarely known. In this work, we studied the linear and nonlinear rheological behavior of a model oil in nematic liquid crystal emulsions, which exhibit long-range droplet-droplet interaction. The characteristic of long-range interaction, attractive at large droplet separation and repulsive at a small surface distance, was inferred from the morphology and thixotropy of emulsions. We suggested a model accounting for the plateau modulus purely due to the long-range repulsive interaction. We further illustrated that neither the yield stress nor the relaxation time followed a simple power-law scaling with respect to the distance to jamming. The rescaled steady and dynamic flow curves could not collapse on master curves above jamming transition when the long-range and short-range repulsive interactions contribute simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson VJ, Terentjev EM, Meeker SP, Crain J, Poon WCK (2001) Cellular solid behaviour of liquid crystal colloids 1. Phase separation and morphology. Eur Phys J E 4:11–20

    CAS  Google Scholar 

  • Basu A, Xu Y, Still T, Arratia PE, Zhang Z, Nordstrom KN, Rieser JM, Gollub JP, Durian DJ, Yodh AG (2014) Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matter 10:3027–3035

    CAS  Google Scholar 

  • Bécu L, Manneville S, Colin A (2006) Yielding and flow in adhesive and nonadhesive concentrated emulsions. Phys Rev Lett 96:138302

    Google Scholar 

  • Berthier L, Biroli G (2011) Theoretical perspective on the glass transition and amorphous materials. Rev Mod Phys 83:587–645

    CAS  Google Scholar 

  • Berthier L, Tarjus G (2009) Nonperturbative effect of attractive forces in viscous liquids. Phys Rev Lett 103:170601

    Google Scholar 

  • Berthier L, Tarjus G (2011) The role of attractive forces in viscous liquids. J Chem Phys 134:214503

    Google Scholar 

  • Bonn D, Denn MM, Berthier L, Divoux T, Manneville S (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89:035005

    Google Scholar 

  • Boyd J, Buick JM, Green S (2007) Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys Fluids 19:093103

    Google Scholar 

  • Bukusoglu E, Pal SK, de Pablo JJ, Abbott NL (2014) Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter 10:1602–1610

    CAS  Google Scholar 

  • Chaudhuri P, Berthier L, Bocquet L (2012) Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Phys Rev E 85:021503

    Google Scholar 

  • Chen DTN, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annu Rev Conden Matt Phys 1:301–322

    CAS  Google Scholar 

  • Chuang I, ., Durrer R, ., Turok N, ., Yurke B, . (1991) Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251:1336–1342

    CAS  Google Scholar 

  • Cohen-Addad S, Hohler R (2014) Rheology of foams and highly concentrated emulsions. Curr Opin Colloid In 19:536–548

    CAS  Google Scholar 

  • Dagois-Bohy S, Somfai E, Tighe BP, van Hecke M (2017) Softening and yielding of soft glassy materials. Soft Matter 13:9036–9045

    CAS  Google Scholar 

  • Dekker RI, Dinkgreve M, de Cagny H, Koeze DJ, Tighe BP, Bonn D (2018) Scaling of flow curves: comparison between experiments and simulations. J Non-Newton Fluid 261:33–37

    CAS  Google Scholar 

  • Dinkgreve M, Paredes J, Michels MAJ, Bonn D (2015) Universal rescaling of flow curves for yield-stress fluids close to jamming. Phys Rev E 92:012305

    CAS  Google Scholar 

  • Dinkgreve M, Michels MAJ, Mason TG, Bonn D (2018) Crossover between athermal jamming and the thermal glass transition of suspensions. Phys Rev Lett 121:228001

    CAS  Google Scholar 

  • Divoux T, Grenard V, Manneville S (2013) Rheological hysteresis in soft glassy materials. Phys Rev Lett 110:018304

    Google Scholar 

  • Fall A, Paredes J, Bonn D (2010) Yielding and shear banding in soft glassy materials. Phys Rev Lett 105:225502

    Google Scholar 

  • Frank FC (1958) I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday Society 25:19–28

    Google Scholar 

  • Gam S, Meth JS, Zane SG, Chi C, Wood BA, Winey KI, Clarke N, Composto RJ (2012) Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity. Soft Matter 8:6512–6520

    CAS  Google Scholar 

  • Hao B, Yu W (2019) A new solid-like state for liquid/liquid/particle mixtures with bicontinuous morphology of concentrated emulsion and concentrated suspension. Langmuir 35:9529–9537

    CAS  Google Scholar 

  • He Q, Yu W, Wu YJ, Zhou CX (2012) Shear induced phase inversion of dilute smectic liquid crystal/polymer blends. Soft Matter 8:2992–3001

    CAS  Google Scholar 

  • Humpert A, Brown SF, Allen MP (2018) Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals. Liq Cryst 45:59–69

    CAS  Google Scholar 

  • Ikeda A, Berthier L, Sollich P (2013) Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9:7669–7683

    CAS  Google Scholar 

  • Irani E, Chaudhuri P, Heussinger C (2014) Impact of attractive interactions on the rheology of dense athermal particles. Phys Rev Lett 112:188303

    Google Scholar 

  • Irani E, Chaudhuri P, Heussinger C (2016) Athermal rheology of weakly attractive soft particles. Phys Rev E 94:052608

    Google Scholar 

  • Joshi YM (2014) Dynamics of colloidal glasses and gels. Annu Rev Chem Biomol 5:181–202

    CAS  Google Scholar 

  • Katgert G, Tighe BP, van Hecke M (2013) The jamming perspective on wet foams. Soft Matter 9:9739–9746

    CAS  Google Scholar 

  • Kawasaki T, Coslovich D, Ikeda A, Berthier L (2015) Diverging viscosity and soft granular rheology in non-Brownian suspensions. Phys Rev E 91:012203

    Google Scholar 

  • Kim HS, Scheffold F, Mason TG (2016) Entropic, electrostatic, and interfacial regimes in concentrated disordered ionic emulsions. Rheol Acta 55:1–15

    Google Scholar 

  • Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7:2456–2470

    CAS  Google Scholar 

  • Lidon P, Villa L, Manneville S (2017) Power-law creep and residual stresses in a carbopol gel. Rheol Acta 56:307–323

    CAS  Google Scholar 

  • Liu AJ, Nagel SR (2010) The jamming transition and the marginally jammed solid. Annu Rev Conden Matt Phys 1:347–369

    Google Scholar 

  • Lu B, Torquato S (1992) Nearest-surface distribution functions for polydispersed particle systems. Phys Rev A 45:5530–5544

    CAS  Google Scholar 

  • Lu PJ, Weitz DA (2013) Colloidal particles: crystals, glasses, and gels. Annu Rev Conden Matt Phys 4:217–233

    CAS  Google Scholar 

  • Mason TG, Scheffold F (2014) Crossover between entropic and interfacial elasticity and osmotic pressure in uniform disordered emulsions. Soft Matter 10:7109–7116

    CAS  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1995) Elasticity of compressed emulsions. Phys Rev Lett 75:2051–2054

    CAS  Google Scholar 

  • Meeker SP, Poon WC, Crain J, Terentjev EM (2000) Colloid-liquid-crystal composites: an unusual soft solid. Phy Rev E 61:R6083–R6086

    CAS  Google Scholar 

  • Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Phil Trans R Soc A 367:5139–5155

    Google Scholar 

  • Nelson AZ, Ewoldt RH (2017) Design of yield-stress fluids: a rheology-to-structure inverse problem. Soft Matter 13:7578–7594

    CAS  Google Scholar 

  • Nordstrom KN, Verneuil E, Arratia PE, Basu A, Zhang Z, Yodh AG, Gollub JP, Durian DJ (2010) Microfluidic rheology of soft colloids above and below jamming. Phys Rev Lett 105:175701

    CAS  Google Scholar 

  • Olsson P, Teitel S (2007) Critical scaling of shear viscosity at the jamming transition. Phys Rev Lett 99:178001

    Google Scholar 

  • Paredes J, Michels MAJ, Bonn D (2013) Rheology across the zero-temperature jamming transition. Phys Rev Lett 111:015701

    Google Scholar 

  • Petekidis G, Vlassopoulos D, Pusey PN (2004) Yielding and flow of sheared colloidal glasses. J Phys Condens Matter 16:S3955–S3963

    CAS  Google Scholar 

  • Poulin P, Cabuil V, Weitz DA (1997) Direct measurement of colloidal forces in an anisotropic solvent. Phys Rev Lett 79:4862–4865

    CAS  Google Scholar 

  • Pusey PN (2008) Colloidal glasses. J Phys Condens Matter 20:494202

    Google Scholar 

  • Pusey PN, van Megen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342

    CAS  Google Scholar 

  • Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56:1–25

    CAS  Google Scholar 

  • Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55:435–458

    CAS  Google Scholar 

  • Santos A, Yuste SB, de Haro ML, Odriozola G, Ogarko V (2014) Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres. Phys Rev E 89:040302(R)

    Google Scholar 

  • Scheffold F, Wilking JN, Haberko J, Cardinaux F, Mason TG (2014) The jamming elasticity of emulsions stabilized by ionic surfactants. Soft Matter 10:5040–5044

    CAS  Google Scholar 

  • Senyuk B, Puls O, Tovkach OM, Chernyshuk SB, Smalyukh II (2016) Hexadecapolar colloids. Nat Commun 7:10659

    CAS  Google Scholar 

  • Seth JR, Lavanya M, Clémentine LC, Michel C, Bonnecaze RT (2011) A micromechanical model to predict the flow of soft particle glasses. Nat Mater 10:838–843

    CAS  Google Scholar 

  • Smalyukh II (2018) Liquid crystal colloids. Annu Rev Conden Matt Phys 9:207–226

    Google Scholar 

  • Smalyukh II, Chernyshuk S, Lev BI, Nych AB, Ognysta U, Nazarenko VG, Lavrentovich OD (2004) Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. Phys Rev Lett 93:117801

    CAS  Google Scholar 

  • Vlassopoulos D, Cloitre M (2014) Tunable rheology of dense soft deformable colloids. Curr Opin Colloid In 19:561–574

    CAS  Google Scholar 

  • Wilking JN, Mason TG (2007) Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Phys Rev E 75:041407

    Google Scholar 

  • Wood TA, Lintuvuori JS, Schofield AB, Marenduzzo D, Poon WCK (2011) A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334:79–83

    CAS  Google Scholar 

  • Wu Y, Wei Y, Zhou C (2006) A study on interfacial tension between flexible polymer and liquid crystal. J Colloid Interface Sci 298:889–898

    CAS  Google Scholar 

  • Yang K, Yu W (2017) Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear. J Rheol 61:627–641

    CAS  Google Scholar 

  • Yang K, Liu Z, Wang J, Yu W (2018) Stress bifurcation in large amplitude oscillatory shear of yield stress fluids. J Rheol 62:89–106

    CAS  Google Scholar 

  • Zapotocky M, Ramos L, Poulin P, Lubensky TC, Weitz DA (1999) Particle-stabilized defect gel in cholesteric liquid crystals. Science 283:209–212

    CAS  Google Scholar 

  • Zywocinski A, Picano F, Oswald P, Géminard JC (2000) Edge dislocation in a vertical smectic—a film: line tension versus temperature and film thickness near the nematic phase. Phys Rev E 62:8133–8140

    CAS  Google Scholar 

Download references

Funding

This study received support from the National Natural Science Foundation of China (No. 51625303, 21790344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, K. & Yu, W. Linear and nonlinear rheology of oil in liquid crystal emulsions. Rheol Acta 59, 783–795 (2020). https://doi.org/10.1007/s00397-020-01244-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01244-2

Keywords

Navigation