Skip to main content
Log in

Influence of pre-shearing on rheometric measurements of an oil-based drilling fluid

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Drilling fluids are suspensions of solid particles and present thixotropic and elastoviscoplastic behaviors simultaneously, which turn their rheological characterization into a challenging task. Rotational rheometers are widely employed to determine the properties of these fluids, and one major challenge in rheometric tests carried out with thixotropic fluids is to obtain repeatable results. Submitting the fluid specimen to a known shear history by performing a pre-shear procedure is commonly used to achieve repeatable results with thixotropic fluids. In this paper, the effect of different pre-shearing conditions on the rheological measurements of an oil-based drilling fluid was investigated using cross-hatched parallel plates. Firstly, an adequate aging time to ensure complete fluid restructuring was determined by monitoring the storage modulus, G′, over an oscillatory time sweep experiment. Shear-rate controlled start-up tests were then conducted to evaluate the gel strength and the steady-state shear stress. Nine different pre-shearing conditions were evaluated, and each experiment was performed three times. Finally, the results were analyzed by using two statistical tools: a two-way analysis of variance (ANOVA) and the Tukey’s range test. The analysis shows that despite the good repeatability achieved when the same pre-shear condition is applied, the pre-shearing affects not only the gel strength but also the steady-state shear stress. The ANOVA also revealed that the effect of the pre-shearing shear rate on the fluid rheological behavior is statistically more significant than the effect of the pre-shearing time. The same analysis was performed after 10 s and 10 min of aging, and similar results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens TS (1991) Experimental observations of particle migration in concentrated suspensions: Couette flow. J Rheol 35:773–795. doi:10.1122/1.550157

    Article  Google Scholar 

  • Alderman NJJ, Meeten GHH, Sherwood JDD (1991) Vane rheometry of bentonite gels. J Nonnewton Fluid Mech 39:291–310. doi:10.1016/0377-0257(91)80019-G

    Article  Google Scholar 

  • American Petroleum Institute (2014) Recommended practice for field-testing oil-based drilling fluids. API Recommended Practice 13B-2 - Fifth Edition, Washington DC

  • Ancey C, Jorrot HH (2001) Yield stress for particle suspensions within a clay dispersion. J Rheol 45:297. doi:10.1122/1.1343879

    Article  Google Scholar 

  • Andrade DEV, Fernandes RR, Santos TGM, Ceccon EV, Cruz ACB, Franco AT, Negrão COR (2016) Curve-fitting equation for prediction of the start-up stress overshoot of an oil-based drilling fluid. J Pet Sci Eng 146:902–908. doi:10.1016/j.petrol.2016.07.037

    Article  Google Scholar 

  • Banfill PFG, Kitching DR (1991) Use of a controlled stress rheometer to study the yield stress of oilwell cement slurries. In: Banfill P (ed) International conference on rheology of fresh cement and concrete—Liverpool. E & F N Spon, London, pp 125–136

    Chapter  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Nonnewton Fluid Mech 56:221–251. doi:10.1016/0377-0257(94)01282-M

    Article  Google Scholar 

  • Barnes HA (1997) Thixotropy—a review. J Nonnewton Fluid Mech 70:1–33. doi:10.1016/S0377-0257(97)00004-9

    Article  Google Scholar 

  • Bonn D, Paredes J, Denn MM, Berthier L, Divoux T, Manneville S (2015) Yield tress materials in soft condensed matter. arXiv 1502.05281:[cond-soft]

  • Breedveld V, van den Ende D, Jongschaap R, Mellema J (2001) Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J Chem Phys 114:5923–5936. doi:10.1063/1.1355315

    Article  Google Scholar 

  • Bui B, Saasen A, Maxey J, Ozbayoglu ME, Miska SZ, Yu M, Takach NE (2012) Viscoelastic properties of oil-based drilling fluids. Annu Trans Nord Rheol Soc 20:33–47

    Google Scholar 

  • Cloitre M, Borrega R, Leibler L (2000) Rheological aging and rejuvenation in microgel pastes. Phys Rev Lett 85:4819–4822. doi:10.1103/PhysRevLett.85.4819

    Article  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002a) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589. doi:10.1122/1.1459447

    Article  Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501. doi:10.1103/PhysRevLett.88.175501

    Article  Google Scholar 

  • Coussot P, Bertrand F, Herzhaft B (2004) Rheological behavior of drilling muds, characterization using MRI visualization. Oil Gas Sci Technol 59:23–29. doi:10.2516/ogst:2004003

    Article  Google Scholar 

  • Darley HCH, Gray GR (1988) Composition and properties of drilling and completion fluids. 5th edn. Gulf Professional Publishing, Houston

    Google Scholar 

  • Derec C, Ajdari A, Ducouret G, Lequeux F (2000) Rheological characterization of aging in a concentrated colloidal suspension. C R Acad Sci Ser IV Phys 1:1115–1119. doi:10.1016/S1296-2147(00)01106-9

    Google Scholar 

  • Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles. Phys Rev E 67:61403. doi:10.1103/PhysRevE.67.061403

    Article  Google Scholar 

  • Deshpande KV, Shapley NC (2010) Particle migration in oscillatory torsional flows of concentrated suspensions. J Rheol 54:663. doi:10.1122/1.3361668

    Article  Google Scholar 

  • Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV analysis of the yielding and flow of model waxy crude oils. Energy Fuel 25:3040–3052. doi:10.1021/ef2002348

    Article  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7:9335–9349. doi:10.1039/c1sm05740e

    Article  Google Scholar 

  • Dzuy NQ, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol 29:335–347. doi:10.1122/1.549794

    Article  Google Scholar 

  • Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212. doi:10.1007/s00397-009-0403-7

    Article  Google Scholar 

  • Fernandes RR, Andrade DEV, Franco AT, Negrão COR (2016) Correlation between the gel-liquid transition stress and the storage modulus of an oil-based drilling fluid. J Nonnewton Fluid Mech 231:6–10. doi:10.1016/j.jnnfm.2016.02.003

    Article  Google Scholar 

  • Fernandes RR, Andrade DEV, Franco AT, Negrão COR (2017) The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material. J Rheol 61:893–903. doi:10.1122/1.4991803

  • Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24:799–814. doi:10.1122/1.549584

    Article  Google Scholar 

  • Geiker MR, Brandl M, Thrane LN, Nielsen LF (2002) On the effect of coarse aggregate fraction and shape on the rheological properties of self-compacting concrete. Cem Concr Aggregates 24:3–6

    Article  Google Scholar 

  • Geri M, Venkatesan R, Sambath K, McKinley GH (2017) Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils. J Rheol 61:427–454. doi:10.1122/1.4978259

    Article  Google Scholar 

  • Jachnik RP, Robinson G (2000) Dynamic barite sag in oil based drilling fluids. Miner Process Extr Metall Rev 20:251–262. doi:10.1080/08827509908962476

    Article  Google Scholar 

  • Kelessidis VC, Maglione R (2008) Yield stress of water–bentonite dispersions. Colloids Surf A Physicochem Eng Asp 318:217–226. doi:10.1016/j.colsurfa.2007.12.050

    Article  Google Scholar 

  • Kelessidis VC, Hatzistamou V, Maglione R (2010) Wall slip phenomenon assessment of yield stress pseudoplastic fluids in Couette geometry. Appl Rheol 20:52656. doi:10.3933/ApplRheol-20-52656

    Google Scholar 

  • Khan SA (1988) Foam rheology: III. Measurement of shear flow properties. J Rheol 32:69–92. doi:10.1122/1.549964

    Article  Google Scholar 

  • Kim JM, Lee SG, Kim C (2008) Numerical simulations of particle migration in suspension flows: frame-invariant formulation of curvature-induced migration. J Nonnewton Fluid Mech 150:162–176. doi:10.1016/j.jnnfm.2007.10.012

    Article  Google Scholar 

  • Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439. doi:10.1017/S0022112087002155

    Article  Google Scholar 

  • Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Nonnewton Fluid Mech 141:167–179. doi:10.1016/j.jnnfm.2006.11.003

    Article  Google Scholar 

  • Levine DM, Ramsey PP, Smidt RK (2001) Applied statistics for engineers and scientists: using Microsoft Excel and Minitab, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Longo GA, Zilio C (2011) Experimental measurement of thermophysical properties of oxide–water nano-fluids down to ice-point. Exp Thermal Fluid Sci 35:1313–1324. doi:10.1016/j.expthermflusci.2011.04.019

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley - VCH, New York

    Google Scholar 

  • Mahaut F, Chateau X, Coussot P, Ovarlez G (2008) Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J Rheol 52:287–313. doi:10.1122/1.2798234

    Article  Google Scholar 

  • Merhi D, Lemaire E, Bossis G, Moukalled F (2005) Particle migration in a concentrated suspension flowing between rotating parallel plates: investigation of diffusion flux coefficients. J Rheol 49:1429–1448. doi:10.1122/1.2079247

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interf Sci 147–148:214–227. doi:10.1016/j.cis.2008.09.005

    Article  Google Scholar 

  • Montgomery DC (2008) Design and analysis of experiments, 6th edn. John Wiley & Sons, New York

    Google Scholar 

  • Montgomery DC, Runger GC (2010) Applied statistics and probability for engineers, 3rd edn. John Wiley & Sons, New York

    Google Scholar 

  • Negrão COR, Franco AT, Rocha LLV (2011) A weakly compressible flow model for the restart of thixotropic drilling fluids. J Nonnewton Fluid Mech 166:1369–1381. doi:10.1016/j.jnnfm.2011.09.001

    Article  Google Scholar 

  • Ovarlez G, Chateau X (2008) Influence of shear stress applied during flow stoppage and rest period on the mechanical properties of thixotropic suspensions. Phys Rev E 77:61403. doi:10.1103/PhysRevE.77.061403

    Article  Google Scholar 

  • Peysson Y (2004) Solid/liquid dispersions in drilling and production. Oil Gas Sci Technol 59:11–21. doi:10.2516/ogst:2004002

    Article  Google Scholar 

  • Power D, Zamora M (2003) Drilling fluid yield stress: measurement techniques for improved understanding of critical drilling fluid parameters (AADE-03-NTCE-35). In: AADE Fluids Conference and Exhibition

  • Salkind NJ, Rasmussen K (2007) Encyclopedia of measurement and statistics, 1st edn. SAGE Research Methods, Thousand Oaks

    Book  Google Scholar 

  • Saxena A, Pathak AK, Ojha K, Sharma S (2017) Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes. Egypt J Pet 26:279–290. doi:10.1016/j.ejpe.2016.04.006

  • Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52:1241. doi:10.1122/1.2963135

    Article  Google Scholar 

  • Seth JR, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M (2012) How do soft particle glasses yield and flow near solid surfaces? Soft Matter 8:140–148. doi:10.1039/c1sm06074k

    Article  Google Scholar 

  • Shauly A, Wachs A, Nir A (1998) Shear-induced particle migration in a polydisperse concentrated suspension. J Rheol 42:1329–1348. doi:10.1122/1.550963

    Article  Google Scholar 

  • Speers RA, Holme KR, Tung MA, Williamson WT (1987) Drilling fluid shear stress overshoot behavior. Rheol Acta 26:447–452. doi:10.1007/BF01333845

    Article  Google Scholar 

  • Tarcha BA, Forte BPP, Soares EJ, Thompson RL (2015) Critical quantities on the yielding process of waxy crude oils. Rheol Acta 54:479–499. doi:10.1007/s00397-015-0835-1

    Article  Google Scholar 

  • Wolthers W, Duits MHG, van den Ende D, Mellema J (1996a) Shear history dependence of the viscosity of aggregated colloidal dispersions. J Rheol 40:799–811. doi:10.1122/1.550783

    Article  Google Scholar 

  • Wolthers W, van den Ende D, Duits MHG, Mellema J (1996b) The viscosity and sedimentation of aggregating colloidal dispersions in a Couette flow. J Rheol 40:55–67. doi:10.1122/1.550784

    Article  Google Scholar 

  • Wyss HM, Deliormanli AM, Tervoort E, Gauckler LJ (2005) Influence of microstructure on the rheological behavior of dense particle gels. AICHE J 51:134–141. doi:10.1002/aic.10296

    Article  Google Scholar 

  • Zamora M, Growcock F (2010) The top 10 myths, misconceptions and mysteries in rheology and hydraulics (AADE-10-DF-HO-40). In: AADE Fluids Conference and Exhibition. American Association of Drilling Engineers, Houston

Download references

Acknowledgements

The authors acknowledge the financial support of PETROBRAS S/A, CNPq, CAPES, FINEP, PRH-ANP/MCT, and PFRH/PETROBRAS (PRH10-UTFPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubens R. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, R.R., Andrade, D.E.V., Franco, A.T. et al. Influence of pre-shearing on rheometric measurements of an oil-based drilling fluid. Rheol Acta 56, 743–752 (2017). https://doi.org/10.1007/s00397-017-1027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-1027-y

Keywords

Navigation