Skip to main content
Log in

WLF model for the pressure dependence of zero shear viscosity of polycarbonate

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Zero shear viscosity data of an amorphous polycarbonate (PC) were obtained by pressure-sweep tests at seven pressures from 1 to 700 bar, at 160, 180, 200, 220, and 240 °C above the glass transition temperature T g . Independent shifts of the logarithmic zero shear viscosity and of the pressure were performed in order to build an empirical master curve at the reference temperature T 0 = 240 °C. On the basis of a Vogel-type model, analytical expressions which fit the empirical logarithmic zero shear viscosity and the pressure shift factors were obtained. Additionally, a general equation of the zero shear viscosity as a function of pressure at any reference temperature was deduced. It is shown that the temperature dependence of the zero shear viscosity follows the Williams-Landel-Ferry (WLF) equation, with a pressure dependence parameter B(P) = B(0)\( \left(1-4.4\times {10}^{-4}\frac{1}{\mathrm{bar}}P\right) \), B(0) = 02.87 from which it is obtained that the pressure dependence of fractional free volume of PC at the glass transition temperature is f(T g , P) = 0.022 B(P).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PC:

Polycarbonate

PE:

Polyethylene

PS:

Polystyrene

PVT:

Pressure-volume-temperature

HPSPR:

High pressure sliding plate rheometer

WLF equation:

William-Landel-Ferry

MVR:

Melt volume rate

PALS:

Positron-annihilation-lifetime-spectroscopy

a η :

Viscosity shift factor

a p :

Pressure shift factor

B(P):

Empirical function of pressure

ƒ:

Fractional free volume

m :

Fitting constant for the power law regime

Mn :

Number average molecular weight

Mw :

Weight average molecular weight

P :

Pressure

T :

Temperature

T 0 :

Reference temperature

T :

Temperature at which viscosity becomes infinite

T g :

Glass transition temperature

T ref :

Other reference temperatures ≠ T0

α ƒ :

Thermal expansion coefficient of the free volume

α ν :

Thermal expansion coefficient of total specific volume

α ν0 :

Thermal expansion coefficient of occupied specific volume

\( \overset{.}{\gamma } \) :

Shear rate

η :

Zero shear viscosity

λ:

Characteristic relaxation time

ν :

Specific volume

ν ƒ :

Free-specific volume

ρ :

Density

Λ:

Adjustable parameter in Vogel model

Φ (P):

Fitting function for the master curve for pressure shift

References

  • Christmann L, Knappe W (1974) Viskositaetsmessungen an Kunststoffschmelzen mit unterschiedlichen Molekulargewichten. Colloid Polym Sci 252:705–711

    Article  Google Scholar 

  • Christmann L, Knappe W (1976) Rheologische Messungen an Kunststoff-Schmelzen mit einem neuen Rotationsrheometer. Rheol Acta 15:296–304

    Article  Google Scholar 

  • Christmann L, Weber G (1978) Beschreibung des Zusammenhangs von Schubspannung und Schergeschwindigkeit, gemessen an Polyaethylenen hoher Dichte. Rheol Acta 17:16–27

    Article  Google Scholar 

  • Dlubek G, Pionteck J, Shaikh MS, Haeussler L, Thraenert S, Hassan EM, Krause-Rehberg R (2007) The free volume in two untreated, pressure-densified, and CO2 gas exposed polymers from positron lifetime and pressure-volume-temperature experiments. E-Polymers 108:1–20

    Google Scholar 

  • Driscoll PD, Bogue DC (1990) Pressure effects in polymer rheology. J Appl Polym Sci 39:1755–1768

    Article  Google Scholar 

  • Duvdevani IJ, Klein I (1967) Analysis of polymer melt flow in capillaries including pressure effects. Soc Pet Eng J 23:41–45

    Google Scholar 

  • Eyring H, Glasstone S, Laidler J (1941) The theory of rate processes. McGraw-Hill Book Co, Inc., New York

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Geisler H, Mueller HG (1979) Fliessaktivierungsenergie verduennter Polymerloesungen. Rheol Acta 18:96

    Article  Google Scholar 

  • Goubert A, Vermant J, Moldenaers P, Goettfert A, Ernst B (2001) Comparison of measurement techniques for evaluating the pressure dependence of the viscosity. Appl Rheol 11:26–37

    Google Scholar 

  • Hellwege VKH, Knappe W, Paul F, Semjonow W (1967) Druckabhaengigkeit der Viskositaet einiger Polystyrolschmelzen. Rheol Acta 8:165–170

    Article  Google Scholar 

  • Herrmann HD, Knappe W (1969) Die temperatur- und druckinvariante Darstellung der Scherviskositaet von geschmolzenem Polymethylmethacrylat. Rheol Acta 8:384–392

    Article  Google Scholar 

  • Kadijk SE, van den Brule BHAA (1994) On the pressure dependency of the viscosity of molten polymers. Polym Eng Sci 34:1535–1546

    Article  Google Scholar 

  • Kanig G (1969) Das freie Volumen und die Aenderung des Ausdehnungskoeffizienten und der Molwaerme bei der Glasuebergangstemperatur von Hochpolymeren. Colloid Polym Sci 233:829–845

    Google Scholar 

  • Karl VH (1979) Ueber die Druckabhaengigkeit der viskoelastichen und physikalisch-chemischen Eigenschaften von Polymeren. Angew Makromol Chem 79:11–19

    Article  Google Scholar 

  • Klaiber F, Lopez IDG, Osswald T, Turng LS (2006) Development of a high pressure slit rheometer. Proceedings of the ANTEC Conference 2006, pp 2320–2324

  • Koran F, Dealy JM (1999) A high pressure sliding plate rheometer for polymer melts. J Rheol 43:1279–1290

    Article  Google Scholar 

  • Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22:171–185

    Article  Google Scholar 

  • Laun HM (2003) Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol Acta 42:295–308

    Article  Google Scholar 

  • Lord HA (1979) Flow of polymers with pressure-dependent viscosity in injection molding die. Polym Eng Sci 19:469–473

    Article  Google Scholar 

  • Mackley MR, Spitteler PHJ (1996) Experimental observations on the pressure-dependent polymer melt rheology of a linear low-density polyethylene using a multipass rheometer. Rheol Acta 35:202–209

    Article  Google Scholar 

  • Maxwell B, Jung A (1957) Hydrostatic pressure effect on polymer melt viscosity. Mod Plast 35:174–182 & 276

  • Mayer A (2010) Optische Technologien. BMBF 1:1–29 www.optischetechnologien.de

  • N. N. (2009) The compelling facts about plastics 2009. Plastics Europe 1:1–24. www.plasticseurope.org

  • Park HE, Dealy J, Muenstedt H (2006) Influence of long-chain branching on time–pressure and time-temperature shift factors for polystyrene and polyethylene. Rheol Acta 46:153–159

    Article  Google Scholar 

  • Rudolph NM, Ehrenstein GW, Osswald TA (2011) Influence of pressure on volume, temperature and crystallization of thermoplastics during processing. Int Polym Process 26:239–248

    Article  Google Scholar 

  • Sedlacek T, Zatloukal M, Filip P, Boldizar A, Saha P (2004) On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym Eng Sci 44:1328–1337

    Article  Google Scholar 

  • Semjonow V (1962) Ueber ein Rotationsviskosimeter zur Messung der Druckabhaengigkeit der Viskositaet hochpolymerer Schmelzen. Rheol Acta 2:138–143

    Article  Google Scholar 

  • Simha R, Boyer RF (1962) On the general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys 37:1003–1007

    Article  Google Scholar 

  • Strobl GR (2009) The physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin

    Google Scholar 

  • Utracki LA (1985) A method of computation of the pressure effect on melt viscosity. Polym Eng Sci 25:655–668

    Article  Google Scholar 

  • van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Vinogradov GV, Malkin AJ (1964) Temperature-independent viscosity characteristics of polymer systems. J Polym Sci 2:2357–2372

    Google Scholar 

  • Vrentas JS, Duda JL (1977) Diffusion in polymer - solvent systems. I. Reexamination of the free-volume theory. J Polym Sci, Part B: Polym Phys 15:403–416

  • Vrentas JS, Duda JL (1978) A Free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers. J Appl Polym Sci 22:2325–2339

  • Westover RF (1961) Effect of hydrostatic pressure on polyethylene melt rheology. SPE Trans 1:14–20

    Google Scholar 

  • Westover RF (1992) Measuring polymer melt viscosities at high pressures: the hydrostatic pressure rheometer. Adv Polym Technol 11:147–151

    Article  Google Scholar 

  • Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie M. Rudolph.

Appendices

Appendix 1 Derivation of the fractional free volume at Tg (Eq. 21)

From the value \( \frac{f\left({T}_0,0\right)}{B(0)}=0.17 \) we can obtain the fractional free volume \( \frac{f\left({T}_g,0\right)}{B(0)} \) at the glass transition temperature T g . This can be done by taking into account that the temperature dependence of the free volume is

$$ \frac{f\left(T,0\right)}{B(0)}=\frac{f\left({T}_0,0\right)}{B(0)}+\frac{\alpha_f(0)}{B(0)}\left(T-{T}_0\right) $$
(A1)

If T=T g , then

$$ \frac{f\left({T}_g,0\right)}{B(0)}=\frac{f\left({T}_0,0\right)}{B(0)}+\frac{\alpha_f(0)}{B(0)}\left({T}_g-{T}_0\right)=0.17+\left[\frac{1}{698.4}\frac{1}{{}^{\circ}\mathrm{C}}\right]\left(136.5-240\right)=0,022 $$
(21)

Appendix 2: Derivation of the master curve (Eq. 26)

Equation 3 is written for the reference temperature T 0:\( {a}_{\eta}\left(T,P;{T}_0\right)=\frac{\eta \left(T,P\right)}{\eta \left({T}_0,P\right)} \). For a new reference temperature T ref  ≠ T 0 we get

$$ {a}_{\eta}\left(T,P;{T}_{ref}\right)=\frac{\eta \left(T,P\right)}{\eta \left({T}_{ref},P\right)} $$
(A2)

By dividing these expressions, we obtain

$$ \frac{a_{\eta}\left(T,P;{T}_{ref}\right)}{a_{\eta}\left(T,P;{T}_0\right)}=\frac{\frac{\eta \left(T,P\right)}{\eta \left({T}_{ref},P\right)}}{\frac{\eta \left(T,P\right)}{\eta \left({T}_0,P\right)}}\kern0.36em \to \frac{a_{\eta}\left(T,P;{T}_{ref}\right)}{a_{\eta}\left(T,P;{T}_0\right)}=\frac{1}{\frac{\eta \left({T}_{ref},P\right)}{\eta \left({T}_0,P\right)}} $$
(A3)

The right-hand side of the last relation is \( \frac{\eta \left({T}_{ref},P\right)}{\eta \left({T}_0,P\right)}={a}_{\eta}\left({T}_{ref},P;{T}_0\right) \). Therefore, we obtain

$$ \frac{a_{\eta}\left(T,P;{T}_{ref}\right)}{a_{\eta}\left(T,P;{T}_0\right)}=\frac{1}{a_{\eta}\left({T}_{ref},P;{T}_0\right)} $$
(A4)

From this equation, we have \( {a}_{\eta}\left(T,P;{T}_{ref}\right)=\frac{a_{\eta}\left(T,P;{T}_0\right)}{a_{\eta}\left({T}_{ref},P;{T}_0\right)} \) and therefore

$$ \log {a}_{\eta}\left(T,P;{T}_{ref}\right)= \log {a}_{\eta}\left(T,P;{T}_0\right)- \log {a}_{\eta}\left({T}_{ref},P;{T}_0\right). $$
(A5)

In particular, for zero pressure we have

$$ \log {a}_{\eta}\left(T,0;{T}_{ref}\right)= \log {a}_{\eta}\left(T,0;{T}_0\right)- \log {a}_{\eta}\left({T}_{ref},0;{T}_0\right). $$
(A6)

Taking into account that \( \log {a}_{\eta}\left(T,0;{T}_0\right)=-2.56\left[\frac{T-{T}_0}{\left(T-{T}_0\right)+118.46{}^{\circ}\mathrm{C}}\right] \) and \( \log {a}_{\eta}\left({T}_{ref},0;{T}_0\right)=-2.56\left[\frac{T_{ref}-{T}_0}{\left({T}_{ref}-{T}_0\right)+118.46{}^{\circ}\mathrm{C}}\right] \)

we obtain

$$ \log {a}_{\eta}\left(T,0;{T}_{ref}\right)=-2.56\left[\frac{T-{T}_0}{\left(T-{T}_0\right)+118.46{}^{\circ}\mathrm{C}}\right]+2.56\left[\frac{T_{ref}-{T}_0}{\left({T}_{ref}-{T}_0\right)+118.46{}^{\circ}\mathrm{C}}\right] $$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolph, N.M., Agudelo, A.C., Granada, J.C. et al. WLF model for the pressure dependence of zero shear viscosity of polycarbonate. Rheol Acta 55, 673–681 (2016). https://doi.org/10.1007/s00397-016-0945-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0945-4

Keywords

Navigation