Skip to main content
Log in

Design of Tween80/oleic acid composite vesicle and its application in controlled release of vitamin C

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fatty acid vesicles (FAVs), with their unique bionic structure, play a crucial role in models for protocells, food manufacturing, and drug delivery systems. However, FAVs are highly sensitive to changes in pH, which imposes strict constraints on their development in food and medicine. Therefore, in this study, the pH window of vesicles formed by oleic acid (OA) was migrated and expanded by introducing a nonionic surfactant, Tween80 (TW80), which resulted in a more stable pH environment for FAVs. Acid–base titration combined with particle size confirmed that different ratios of TW80 and OA expanded the pH window from 8.2–10 to 1.99–7.49, as determined by potential and turbidity. The intermolecular forces of TW80/OA composite vesicles were determined by infrared spectroscopy. Vitamin C (VC) was used as a model drug, and the TW80/OA/VC vesicles showed an encapsulation rate of 48.87% and a drug-loading capacity of 13.13% at a VC concentration of 1 mg/mL, pH = 5.5, and T = 25 °C. The vesicles were also found to have a high VC concentration and a high drug loading capacity. The in vitro release experiments demonstrated that the TW80/OA/VC vesicles could accomplish the drug release process in a physiological environment. The results of in vitro free radical scavenging experiments showed that the TW80/OA/VC vesicles could maximize the scavenging rate of DPPH free radicals up to 97.61%. This study can provide a fundamental theoretical basis for applying drug carrier vesicles in cosmetics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data will be made available on request.

References

  1. Fameau A-L, Arnould A, Saint-Jalmes A (2014) Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface Sci 19:471–479. https://doi.org/10.1016/j.cocis.2014.08.005

    Article  CAS  Google Scholar 

  2. Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374. https://doi.org/10.1039/c3sm27716j

    Article  CAS  Google Scholar 

  3. Douliez J-P, Gaillard C (2014) Self-assembly of fatty acids: from foams to protocell vesicles. New J Chem 38:5142–5148. https://doi.org/10.1039/c4nj00914b

    Article  CAS  Google Scholar 

  4. Mansy S (2009) Model protocells from single-chain lipids. Int J Mol Sci 10:835–843. https://doi.org/10.3390/ijms10030835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morigaki K, Walde P (2007) Fatty acid vesicles. Curr Opin Colloid Interface Sci 12:75–80. https://doi.org/10.1016/j.cocis.2007.05.005

    Article  CAS  Google Scholar 

  6. Douliez J-P, Houssou BH, Fameau AL, Navailles L, Nallet F, Grélard A, Dufourc EJ et al (2016) Self-assembly of bilayer vesicles made of saturated long chain fatty acids. Langmuir 32:401–410. https://doi.org/10.1021/acs.langmuir.5b03627

    Article  CAS  PubMed  Google Scholar 

  7. Reimhult E, Virk MM (2021) Hybrid lipopolymer vesicle drug delivery and release systems. J Biomed Res 35:301–309. https://doi.org/10.7555/jbr.35.20200206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2:a002170–a002170. https://doi.org/10.1101/cshperspect.a002170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan Y, Ma J, Fang Y, Liu T, Hu X, Xia Y (2018) Neutral and acid-adapted fatty acid vesicles of conjugated linoleic acid. Colloid Surf B 167:385–391. https://doi.org/10.1016/j.colsurfb.2018.04.035

    Article  CAS  Google Scholar 

  10. Sawada D, Hirono A, Asakura K, Banno T (2020) pH-Tolerant giant vesicles composed of cationic lipids with imine linkages and oleic acids. RSC Adv 10:34247–34253. https://doi.org/10.1039/d0ra06822e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogerson ML, Robinson BH, Bucak S, Walde P (2006) Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloid Surf B 48:24–34. https://doi.org/10.1016/j.colsurfb.2006.01.001

    Article  CAS  Google Scholar 

  12. Shen J, Wang Y, Fan P, Jiang L, Zhuang W, Han Y, Zhang H (2019) Self-assembled vesicles formed by C18 unsaturated fatty acids and sodium dodecyl sulfate as a drug delivery system. Colloid Surf A 568:66–74. https://doi.org/10.1016/j.colsurfa.2019.01.070

    Article  CAS  Google Scholar 

  13. Guo L, Yang J, Guo X, Xia Y (2019) Self-assembled vesicles of sodium oleate and chitosan quaternary ammonium salt in acidic or alkaline aqueous solutions. Colloid Polym Sci 297:1455–1463. https://doi.org/10.1007/s00396-019-04571-w

    Article  CAS  Google Scholar 

  14. Douliez J-P, Zhendre V, Grélard A, Dufourc EJ (2014) Aminosilane/oleic acid vesicles as model membranes of protocells. Langmuir 30:14717–14724. https://doi.org/10.1021/la503908z

    Article  CAS  PubMed  Google Scholar 

  15. Kundu N, Banerjee P, Kundu S, Dutta R, Sarkar N (2016) Sodium chloride triggered the fusion of vesicle composed of fatty acid modified protic ionic liquid: a new insight into the membrane fusion monitored through fluorescence lifetime imaging microscopy. J Phys Chem B 121:24–34. https://doi.org/10.1021/acs.jpcb.6b09298

    Article  CAS  PubMed  Google Scholar 

  16. Zhou M, Bi Y, Ding M, Yuan Y (2021) One-step biosynthesis of vitamin C in Saccharomyces cerevisiae. Front Microbiol 12:643472. https://doi.org/10.3389/fmicb.2021.643472

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pei X, Yao J, Ran S, Lu H, Yang S, Zhang Y, Wang M et al (2023) Association of serum water-soluble vitamin exposures with the risk of metabolic syndrome: results from NHANES 2003–2006. Front Endocrinol 14:1167317. https://doi.org/10.3389/fendo.2023.1167317

    Article  Google Scholar 

  18. Larsson SC, Mason AM, Vithayathil M, Carter P, Kar S, Zheng J-S, Burgess S (2022) Circulating vitamin C and digestive system cancers: Mendelian randomization study. Clin Nutr 41:2031–2035. https://doi.org/10.1016/j.clnu.2022.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A et al (2021) Nutraceuticals: transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules 26:2540. https://doi.org/10.3390/molecules26092540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Qian S, Wang S, Jia S, Zheng N, Yao Q, Gao J (2023) Combination of vitamin C and Lenvatinib potentiates antitumor effects in hepatocellular carcinoma cells in vitro. PeerJ 11:e14610. https://doi.org/10.7717/peerj.14610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui Q, Ding W, Liu P, Luo B, Yang J, Lu W, Hu Y et al (2022) Developing bi-gold compound BGC2a to target mitochondria for the elimination of cancer cells. Int J Mol Sci 23:12169. https://doi.org/10.3390/ijms232012169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiao Z, Wang X, Yin Y, Xia J, Mei Y (2018) Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J Microencapsul 35:272–280. https://doi.org/10.1080/02652048.2018.1467509

    Article  CAS  PubMed  Google Scholar 

  23. Hassane Hamadou A, Huang W-C, Xue C, Mao X (2020) Formulation of vitamin C encapsulation in marine phospholipids nanoliposomes: characterization and stability evaluation during long term storage. LWT-Food Sci Technol 127:109439. https://doi.org/10.1016/j.lwt.2020.109439

    Article  CAS  Google Scholar 

  24. Khuntia A, Kumar R, Premjit Y, Mitra J (2022) Release behavior of vitamin C nanoliposomes from starch–vitamin C active packaging films. J Food Process Eng 45:1–14. https://doi.org/10.1111/jfpe.14075

    Article  CAS  Google Scholar 

  25. Li A, Pazzi J, Xu M, Subramaniam AB (2018) Cellulose abetted assembly and temporally decoupled loading of cargo into vesicles synthesized from functionally diverse lamellar phase forming amphiphiles. Biomacromol 19:849–859. https://doi.org/10.1021/acs.biomac.7b01645

    Article  CAS  Google Scholar 

  26. Cristiano MC, Mancuso A, Fresta M, Torella D, De Gaetano F, Ventura CA, Paolino D (2021) Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate. Pharmaceutics 13:548. https://doi.org/10.3390/pharmaceutics13040548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garenne D, Beven L, Navailles L, Nallet F, Dufourc EJ, Douliez JP (2016) Sequestration of proteins by fatty acid coacervates for their encapsulation within vesicles. Angew Chem Int Ed 55:13475–13479. https://doi.org/10.1002/anie.201607117

    Article  CAS  Google Scholar 

  28. Nasr AM, Mortagi YI, Elwahab NHA, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM et al (2022) Upgrading the transdermal biomedical capabilities of thyme essential oil nanoemulsions using amphiphilic oligochitosan vehicles. Pharmaceutics 14:1350. https://doi.org/10.3390/pharmaceutics14071350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rhyaf A, Naji H, Al-Karagoly H, Albukhaty S, Sulaiman GM, Alshammari AAA, Mohammed HA et al (2023) In vitro and in vivo functional viability, and biocompatibility evaluation of bovine serum albumin-ingrained microemulsion: a model based on sesame oil as the payload for developing an efficient drug delivery platform. Pharmaceuticals 16:582. https://doi.org/10.3390/ph16040582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melchior S, Codrich M, Gorassini A, Mehn D, Ponti J, Verardo G, Tell G et al (2023) Design and advanced characterization of quercetin-loaded nano-liposomes prepared by high-pressure homogenization. Food Chem 428:136680. https://doi.org/10.1016/j.foodchem.2023.136680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ali M, Bardhan S, Saha SK (2022) Polyoxyethylene sorbitan monolaurate induced vesicle-to-micelle transition of aqueous dimethyldioctadecylammonium bromide dispersion. J Mol Liq 348:118455. https://doi.org/10.1016/j.molliq.2021.118455

    Article  CAS  Google Scholar 

  32. Hu X, Wang Y, Zhang L, Xu M (2020) Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of vitamin C. Carbohydr Polym 234:115920. https://doi.org/10.1016/j.carbpol.2020.115920

    Article  CAS  PubMed  Google Scholar 

  33. Wang R, Ma C, Yan H, Wang P, Yu S, Zhang T, Yin Z (2023) Preparation and characterization of GX-50 and vitamin C co-encapsulated microcapsules by a water-in-oil-in-water (W1/O/W2) double emulsion–complex coacervation method. Langmuir 39:13863–13875. https://doi.org/10.1021/acs.langmuir.3c01360

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Zhu J, Bao P, Ding Y, Shen Y, Webster TJ, Xu Y (2019) Construction and in vivo/in vitro evaluation of a nanoporous ion-responsive targeted drug delivery system for recombinant human interferon α-2b delivery. Int J Nanomed 14:5339–5353. https://doi.org/10.2147/ijn.S209646

    Article  CAS  Google Scholar 

  35. Man H, Jia Y, Song H, Yan X, Zhang D, Huang Y, Qi B et al (2023) Effects of κ-carrageenan addition and chlorogenic acid covalent crosslinking on protein conformation and gelling properties of soy protein hydrogels. Lwt-Food Sci Technol 174:114434. https://doi.org/10.1016/j.lwt.2023.114434

    Article  CAS  Google Scholar 

  36. Kawabata Y, Ohmoto K, Murakami A, Takahashi Y, Yamauchi Y, Kato T (2017) Hydrophilic and hydrophobic tail effects on vesicle formation in a non-ionic surfactant aqueous solution below the Krafft temperature. Colloids Surf, A 520:779–787. https://doi.org/10.1016/j.colsurfa.2017.01.090

    Article  CAS  Google Scholar 

  37. Huang J, Wang L, Lin R, Wang AY, Yang L, Kuang M, Qian W et al (2013) Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5:4632–4639. https://doi.org/10.1021/am400713j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP (2010) Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Delivery 17:238–248. https://doi.org/10.3109/10717541003680981

    Article  CAS  PubMed  Google Scholar 

  39. Llanos S, Giraldo LJ, Santamaria O, Franco CA, Cortés FB (2018) Effect of sodium oleate surfactant concentration grafted onto SiO2 nanoparticles in polymer flooding processes. ACS Omega 3:18673–18684. https://doi.org/10.1021/acsomega.8b02944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El Sayeh F, Abou El Ela A, Abbas Ibrahim M, Alqahtani Y, Almomen A, Sfouq Aleanizy F (2021) Fluconazole nanoparticles prepared by antisolvent precipitation technique: physicochemical, in vitro, ex vivo and in vivo ocular evaluation. Saudi Pharm J 29:576–585. https://doi.org/10.1016/j.jsps.2021.04.018

    Article  CAS  Google Scholar 

  41. Abedi Karjiban R, Basri M, Abdul Rahman MB, Salleh AB (2012) Molecular dynamics simulation of palmitate ester self-assembly with diclofenac. Int J Mol Sci 13:9572–9583. https://doi.org/10.3390/ijms13089572

    Article  CAS  PubMed  Google Scholar 

  42. Huma S, Khan HMS, Ijaz S, Sarfraz M, Zaka HS, Ahmad A, Jalil A (2022) Development of niacinamide/ferulic acid-loaded multiple emulsion and its in vitro/in vivo investigation as a cosmeceutical product. Biomed Res Int 2022:1–13. https://doi.org/10.1155/2022/1725053

    Article  CAS  Google Scholar 

  43. Kanicky JR, Shah DO (2003) Effect of premicellar aggregation on the pKa of fatty acid soap solutions. Langmuir 19:2034–2038. https://doi.org/10.1021/la020672y

    Article  CAS  Google Scholar 

  44. Hou KK, Pan H, Lanza GM, Wickline SA (2013) Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials 34:3110–3119. https://doi.org/10.1016/j.biomaterials.2013.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caschera F, de la Serna JB, Löffler PMG, Rasmussen TE, Hanczyc MM, Bagatolli LA, Monnard PA (2011) Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles. Langmuir 27:14078–14090. https://doi.org/10.1021/la203057b

    Article  CAS  PubMed  Google Scholar 

  46. Xu W, Wang X, Zhong Z, Song A, Hao J (2012) Influence of counterions on lauric acid vesicles and theoretical consideration of vesicle stability. J Phys Chem B 117:242–251. https://doi.org/10.1021/jp306630n

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y, Li F, Luan Y, Cao W, Ji X, Zhao L, Zhang L et al (2012) Formation of drug/surfactant catanionic vesicles and their application in sustained drug release. Int J Pharm 436:806–814. https://doi.org/10.1016/j.ijpharm.2012.07.053

    Article  CAS  PubMed  Google Scholar 

  48. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benegra M, Couto GH, Pagnoncelli MGB (2023) Preparation and evaluation of w/o/w-type emulsions for encapsulation of citronella essential oil by inverse ionic gelation. Colloid Polym Sci 301:1159–1170. https://doi.org/10.1007/s00396-023-05134-w

    Article  CAS  Google Scholar 

  50. Harimurti N, Nasikin M, Mulia K (2021) Water-in-oil-in-water nanoemulsions containing temulawak (Curcuma xanthorriza Roxb) and red dragon fruit (Hylocereus polyrhizus) Extracts. Molecules 26:196. https://doi.org/10.3390/molecules26010196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rendón A, Carton David G, Sot J, García-Pacios M, Montes LR, Valle M, Arrondo J-Luis R, et al (2012) Model systems of precursor cellular membranes: long-chain alcohols stabilize spontaneously formed oleic acid vesicles. Biophys J 102:278–286. https://doi.org/10.1016/j.bpj.2011.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Jiang L, Shen Q, Shen J, Han Y, Zhang H (2017) Investigation on the self-assembled behaviors of C18unsaturated fatty acids in arginine aqueous solution. RSC Adv 7:41561–41572. https://doi.org/10.1039/c7ra06088b

    Article  CAS  Google Scholar 

  53. Shen Y, Hoffmann H, Lin H, Liu Z, Hao J (2017) The phase transition from L3 phase to vesicles and rheological properties of a nonionic surfactant mixture system. Colloid Polym Sci 295:1663–1670. https://doi.org/10.1007/s00396-017-4144-3

    Article  CAS  Google Scholar 

  54. Chen L-C, Chen K-X, Huang X-y, Lou J, Li J-Y, Deng S-P (2019) Vesicles from the self-assembly of the ultra-small fatty acids with amino acids under aqueous conditions. Colloids Surf B 173:69–76. https://doi.org/10.1016/j.colsurfb.2018.07.007

    Article  CAS  Google Scholar 

  55. Peng F, Wang Q, Shi R, Wang Z, You X, Liu Y, Wang F et al (2016) Fabrication of sesame sticks-like silver nanoparticles/polystyrene hybridnanotubes and their catalytic effects. Sci Rep 6:39502. https://doi.org/10.1038/srep39502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silva C, Bobillier F, Canales D, Antonella Sepúlveda F, Cament A, Amigo N, Rivas LM et al (2020) Mechanical and antimicrobial polyethylene composites with CaO nanoparticles. Polymers 12:2132. https://doi.org/10.3390/polym12092132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liang S, Wang K, Wang K, Kou Y, Wang T, Guo C, Wang W et al (2022) Adsorption of diclofenac sodium by aged degradable and non-degradable microplastics: environmental effects, adsorption mechanisms. Toxics 11:24. https://doi.org/10.3390/toxics11010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guan Z, Lu K, Zhang Y, Yang H, Li X (2022) Study of the effect of manganese ion addition points on the separation of scheelite and calcite by sodium silicate. Materials 15:4699. https://doi.org/10.3390/ma15134699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peacock H, Blum SA (2023) Surfactant micellar and vesicle microenvironments and structures under synthetic organic conditions. J Am Chem Soc 145:7648–7658. https://doi.org/10.1021/jacs.3c01574

    Article  CAS  PubMed  Google Scholar 

  60. Safari JB, Bapolisi AM, Krause RWM (2021) Development of pH-sensitive chitosan-g-poly(acrylamide-co-acrylic acid) hydrogel for controlled drug delivery of tenofovir disoproxil fumarate. Polymers 13:3571. https://doi.org/10.3390/polym13203571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR (2020) Vitamin C: one compound, several uses. Advances for delivery, efficiency and stability. Nanomed Nanotechnol Biol Med 24:102117. https://doi.org/10.1016/j.nano.2019.102117

  62. Gallarate M, Carlotti ME, Trotta M, Bovo S (1999) On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharmaceut 188:233–241. https://doi.org/10.1016/s0378-5173(99)00228-8

    Article  CAS  Google Scholar 

  63. Guo X, Yang J (2021) Preparation of oleic acid–carboxymethylcellulose sodium composite vesicle and its application in encapsulating nicotinamide. Polym Int 70:1604–1611. https://doi.org/10.1002/pi.6256

    Article  CAS  Google Scholar 

  64. Li D, Xu W, Liu H (2023) Fabrication of chitosan functionalized dual stimuli-responsive injectable nanogel to control delivery of doxorubicin. Colloid Polym Sci 301:879–891. https://doi.org/10.1007/s00396-023-05103-3

    Article  CAS  Google Scholar 

  65. Liu H, Meng X, Li L, Hu X, Fang Y, Xia Y (2021) Synergistic effect on antioxidant activity of vitamin C provided with acidic vesiculation of hybrid fatty acids. J Funct Foods 85:104647. https://doi.org/10.1016/j.jff.2021.104647

    Article  CAS  Google Scholar 

  66. Geng M, Feng X, Wu X, Tan X, Liu Z, Li L, Huang Y et al (2023) Encapsulating vitamins C and E using food-grade soy protein isolate and pectin particles as carrier: insights on the vitamin additive antioxidant effects. Food Chem 418:135955. https://doi.org/10.1016/j.foodchem.2023.135955

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We received support of the Heilongjiang Province key research and development plan project (JD22A016), Heilongjiang Province “Double first-class” discipline collaborative innovation achievement construction project (LJGXCG2022-126), Basic Scientific Research Project for Heilongjiang Provincial Colleges and Universities (2022-KYYWF-0609), Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation Open Fund Project (kfkt2023-14), Heilongjiang Huahao Testing Technology Service Co., LTD.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis and investigation, Y.G.; data curation, Y.G., W.Y., C.W. and X.F., writing—original draft, Y.G.; writing—review & editing, X.Z., L.L. and D.W.; supervision, X.Z., L.L. and D.W.; project administration, X.Z.; funding acquisition, X.Z., L.L. and D.W. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiangyu Zhang, Jinlian Li or Dongmei Wu.

Ethics declarations

Ethical approval

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Yang, W., Wu, C. et al. Design of Tween80/oleic acid composite vesicle and its application in controlled release of vitamin C. Colloid Polym Sci 302, 561–571 (2024). https://doi.org/10.1007/s00396-023-05212-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05212-z

Keywords

Navigation