Skip to main content
Log in

Large amplitude oscillatory shear studies on dense PNIPAM microgel colloidal glasses

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report here the yielding behavior and large amplitude oscillatory shear (LAOS) response of dense colloidal suspensions of two types of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel spherical particles: (i) having core–shell (CS-PNIPAM) structure with dangling polymer chains and (ii) having only a homogeneous cross-linked core (HC-PNIPAM). By performing systematic rheological studies on the glassy state of these two types of colloidal particles, we show that dangling polymer chains that exist on CS-PNIPAM particles exhibit two-step yielding analogous to that reported in soft-sphere colloidal glasses with attractive interactions, whereas the dense suspensions of HC-PNIPAM spheres, in which dangling polymer chains are absent, showed single-step yielding similar to that of hard-sphere colloidal glasses. Dynamic light scattering measurements on CS-PNIPAM clearly show that dangling polymer chains, which are absent in HC-PNIPAM particles, get entangled under dense conditions and are responsible for (i) observed sub-diffusive behavior in mean squared displacement at small time and (ii) two-step yielding behavior in dense colloidal glass of CS-PNIPAM spheres. Further, we did LAOS measurements to gain further insight on the role of dangling polymer chains and their entanglements on the yielding behavior of the glassy state. We determined the energy associated with the yielding in the glassy state of both types of microgel particles and interpret its role in disentangling the dangling polymer chains between the CS-PNIPAM particles in their dense state as well as its contribution to the cage breaking under shear in the glassy state.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tata BVR, Jena SS (2006) Ordering, dynamics and phase transitions in charged colloids. Solid State Commun 139:562–580. https://doi.org/10.1016/j.ssc.2006.06.005

    Article  CAS  Google Scholar 

  2. Shinohara T, Sogami IS, Tanigawa M, Yoshiyama T, Yamada H, Oka H, Ise N (2007) Gravitational sedimentation effect of colloidal silica crystals in binary systems of titanium dioxide and silica particles. Phase Transit 80:875–886. https://doi.org/10.1080/01411590701383730

    Article  CAS  Google Scholar 

  3. Ackerson BJ, Paulin SE, Johnson B, van Megen W, Underwood S (1999) Crystallization by settling in suspensions of hard spheres. Phys Rev E 59:6903–6913. https://doi.org/10.1103/PhysRevE.59.6903

    Article  CAS  Google Scholar 

  4. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:1–17. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  Google Scholar 

  5. Yunker PJ, Chen K, Gratale MD, Lohr M A, Still T, Yodh AG (2014) Physics in ordered and disordered colloidal matter composed of poly (N-isopropylacrylamide) microgel particles. Rep Prog Phys 77:056601. https://doi.org/10.1088/0034-4885/77/5/056601

  6. Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Nucleation and growth of colloidal crystals. Phys Rev Lett 57:1733–1736. https://doi.org/10.1103/PhysRevLett.57.1733

    Article  CAS  PubMed  Google Scholar 

  7. Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. Europhys Lett 75:915–921. https://doi.org/10.1209/epl/i2006-10203-9

    Article  CAS  Google Scholar 

  8. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023. https://doi.org/10.1103/Phys.Rev.Lett.78.2020

    Article  CAS  Google Scholar 

  9. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. Europhys Lett 75:624–630. https://doi.org/10.1209/epl/i2006-10156-y

    Article  CAS  Google Scholar 

  10. Van Megen W, Underwood SM (1993) Glass transition in colloidal hard spheres: mode-coupling theory analysis. Phys Rev Lett 70:2766–2769. https://doi.org/10.1103/PhysRevLett.70.2766

    Article  Google Scholar 

  11. Hirokawa Y, Tanaka T (1984) Volume phase transition in a non-ionic gel. AIP Conf Proc 107:203–208. https://doi.org/10.1063/1.34300

    Article  CAS  Google Scholar 

  12. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly (N-isopropylacrylamide) latex. Langmuir 5:816–818

    Article  CAS  Google Scholar 

  13. Fernández-Nieves A, Fernández-Barbero A, Vincent B, de las Nieves FJ (2003) Osmotic de-swelling of ionic microgel particles. J Chem Phys 119:10383–10388. https://doi.org/10.1063/1.1618734

    Article  CAS  Google Scholar 

  14. Cho JK, Meng Z, Lyon LA, Breedveld V (2009) Tunable attractive and repulsive interactions between pH-responsive microgels. Soft Matter 5:3599–3602. https://doi.org/10.1039/b912105f

    Article  CAS  Google Scholar 

  15. Tata BVR, Brijitta J, Joshi RG (2013) Thermo-responsive nanogel dispersions: dynamics and phase behaviour. Int J Adv Eng Sci Appl Math 5:240–249. https://doi.org/10.1007/s12572-010-0016-5

    Article  Google Scholar 

  16. Brijitta J, Tata BVR, Kaliyappan T (2009) Phase behavior of poly (N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J Nanosci Nanotechnol 9:5323–5328. https://doi.org/10.1166/jnn.2009.1144

    Article  CAS  PubMed  Google Scholar 

  17. Joshi RG, Tata BVR, Brijitta J (2011) Pressure tuning of bragg diffraction in stimuli responsive microgel crystals. AIP Conf Proc 1349:208–209. https://doi.org/10.1063/1.3605809

    Article  CAS  Google Scholar 

  18. Arora AK, Tata BVR (1996) Ordering and phase transitions in charged colloids. VCH publishers, New York

    Google Scholar 

  19. Joshi RG, Tata BVR (2017) Sub-diffusive dynamics and two-step yielding in dense thermo-responsive microgel glasses. Colloid Polym Sci 295:1671–1683. https://doi.org/10.1007/s00396-017-4142-5

    Article  CAS  Google Scholar 

  20. Brijitta J, Tata BVR, Joshi RG, Kaliyappan T (2009) Random hcp and fcc structures in thermoresponsive microgel crystals. J Chem Phys 131:074904. https://doi.org/10.1063/1.3210765

  21. Karthickeyan D, Joshi RG, Tata BVR (2017) FCC-HCP coexistence in dense thermo-responsive microgel crystals. J Chem Phys 146:224503. https://doi.org/10.1063/1.4984978

  22. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016. https://doi.org/10.1039/FT9969205013

    Article  CAS  Google Scholar 

  23. Ngai T, Behrens SH, Auweter H (2005) Novel emulsions stabilized by pH and temperature sensitive microgels. Chem Commun 3:331–333. https://doi.org/10.1039/B412330A

    Article  Google Scholar 

  24. Shibayama M, Ikkai F, Inamoto S, Nomura S, Han CC (1996) pH and salt concentration dependence of the microstructure of poly (N-isopropylacrylamide-co-acrylic acid) gels. J Chem Phys 105:4358–4366. https://doi.org/10.1063/1.472252

    Article  CAS  Google Scholar 

  25. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579. https://doi.org/10.1016/S1359-6446(02)02255-9

    Article  CAS  PubMed  Google Scholar 

  26. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339. https://doi.org/10.1016/S0169-409X(01)00203-4

    Article  CAS  PubMed  Google Scholar 

  27. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  28. Cui G, Wang H, Long S, Zhang T, Guo X, Chen S, Kakuchi T, Duan Q, Zhao D (2022) Thermo-and light-responsive polymer-coated magnetic nanoparticles as potential drug carriers. Front Bioeng Biotechnol 10:931830. https://doi.org/10.3389/fbioe.2022.931830

  29. Saunders BR (2004) On the structure of poly (N-isopropylacrylamide) microgel particles. Langmuir 20:3925–3932. https://doi.org/10.1021/la036390v

    Article  CAS  PubMed  Google Scholar 

  30. Hunter GL, Weeks ER (2012) The physics of the colloidal glass transition. Rep Prog Phys 75:066501. https://doi.org/10.1088/0034-4885/75/6/066501

  31. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  32. Winter HH (2013) Glass transition as the rheological inverse of gelation. Macromolecules 46:2425–2432. https://doi.org/10.1021/ma400086v

    Article  CAS  Google Scholar 

  33. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773. https://doi.org/10.1103/PhysRevLett.75.2770

    Article  CAS  PubMed  Google Scholar 

  34. Pusey PN, van Megen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083–2086. https://doi.org/10.1103/PhysRevLett.59.2083

    Article  CAS  PubMed  Google Scholar 

  35. Van Megen W, Pusey PN (1991) Dynamic light-scattering study of the glass transition in a colloidal suspension. Phys Rev A 43:5429–5441. https://doi.org/10.1103/PhysRevA.43.5429

    Article  Google Scholar 

  36. Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158. https://doi.org/10.1006/jcis.1998.5769

    Article  CAS  PubMed  Google Scholar 

  37. Carrier V, Petekidis G (2009) Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J Rheol 53:245–273. https://doi.org/10.1122/1.3045803

    Article  CAS  Google Scholar 

  38. Kaithakkal Jathavedan K, Kanheerampockil F, Bhat S (2020) Role of particle morphology in the yielding behavior of dense thermosensitive microgel suspensions. J Appl Polym Sci 137:48625. https://doi.org/10.1002/app.48625

    Article  CAS  Google Scholar 

  39. Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90:048304. https://doi.org/10.1103/PhysRevLett.90.048304

  40. Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55:435–458. https://doi.org/10.1122/1.3544591

    Article  CAS  Google Scholar 

  41. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256. https://doi.org/10.1016/0166-6622(86)80274-8

    Article  CAS  Google Scholar 

  42. Saisavadas MV, Tata BVR, Joshi RG, Kumar MP, Dhara S (2020) Rheological studies on homogeneous and inhomogeneous core dense colloidal PNIPAM microgels. AIP Conf Proc 2269:060001. https://doi.org/10.1063/5.0019582

  43. Kwok MH, Li Z, Ngai T (2013) Controlling the synthesis and characterization of micrometer-sized PNIPAM microgels with tailored morphologies. Langmuir 29:9581–9591. https://doi.org/10.1021/la402062t

    Article  CAS  PubMed  Google Scholar 

  44. Acciaro R, Gilanyi T, Varga I (2011) Preparation of monodisperse poly (N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 27:7917–7925. https://doi.org/10.1021/la2010387

    Article  CAS  PubMed  Google Scholar 

  45. Arora AK, Kesavamoorthy R (1985) On coexistence of crystalline and liquid order in colloidal suspensions. Solid State Commun 54:1047–1050. https://doi.org/10.1016/0038-1098(85)90757-4

    Article  CAS  Google Scholar 

  46. Destribats M, Eyharts M, Lapeyre V, Sellier E, Varga I, Ravaine V, Schmitt V (2014) Impact of pNIPAM microgel size on its ability to stabilize Pickering emulsions. Langmuir 30:1768–1777. https://doi.org/10.1021/la4044396

    Article  CAS  PubMed  Google Scholar 

  47. Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media. Physica A 157:705–741. https://doi.org/10.1016/0378-4371(89)90063-0

    Article  CAS  Google Scholar 

  48. Furukawa H, Hirotsu S (2002) Dynamic light scattering from static and dynamic fluctuations in inhomogeneous media. J Phys Soc Jpn 71:2873–2880. https://doi.org/10.1143/jpsj.71.2873

    Article  CAS  Google Scholar 

  49. Segre PN, Pusey PN (1996) Scaling of the dynamic scattering function of concentrated colloidal suspensions. Phys Rev Lett 77:771. https://doi.org/10.1103/PhysRevLett.77.771

    Article  CAS  PubMed  Google Scholar 

  50. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458. https://doi.org/10.1122/1.2970095

    Article  CAS  Google Scholar 

  51. Tariq S, Giacomin AJ, Gunasekaran S (1998) Nonlinear viscoelasticity of cheese. J Biorheol 35:171–191. https://doi.org/10.1016/S0006-355X(99)80006-7

    Article  Google Scholar 

  52. de Souza Mendes PR, Thompson RL, Alicke AA, Leite RT (2014) The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. J Rheol 58:537–561. https://doi.org/10.1122/1.4865695

    Article  CAS  Google Scholar 

  53. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105. https://doi.org/10.1002/1439-2054(20020201)287:2%3c83::aid-mame83%3e3.0.co;2-b

    Article  CAS  Google Scholar 

  54. Wilhelm M, Maring D, Spiess HW (1998) Fourier-transform rheology. Rheol Acta 37:399–405. https://doi.org/10.1007/s003970050126

    Article  CAS  Google Scholar 

  55. van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195–1209. https://doi.org/10.1122/1.4808054

    Article  CAS  Google Scholar 

  56. Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman DR, Weitz DA (2009) Soft colloids make strong glasses. Nature 462:83–86. https://doi.org/10.1038/nature08457

    Article  CAS  PubMed  Google Scholar 

  57. Van Megen W, Underwood SM (1994) Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys Rev E 49:4206–4220. https://doi.org/10.1103/PhysRevE.49.4206

    Article  Google Scholar 

  58. Tata BVR, Mohanty PS, Valsakumar MC (2001) Glass transition and dynamical heterogeneities in charged colloidal suspensions under pressure. Phys Rev Lett 88:018302. https://doi.org/10.1103/PhysRevLett.88.018302

  59. Shukla A, Arnipally S, Dagaonkar M, Joshi YM (2015) Two-step yielding in surfactant suspension pastes. Rheol Acta 54:353–364. https://doi.org/10.1007/s00397-015-0845-z

    Article  CAS  Google Scholar 

  60. Petekidis G, Vlassopoulos D, Pusey PN (2003) Yielding and flow of colloidal glasses. Faraday Discuss 123:287–302. https://doi.org/10.1039/B207343A

    Article  CAS  PubMed  Google Scholar 

  61. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion-and attraction-dominated colloidal glasses. J Rheol 52:649–676. https://doi.org/10.1122/1.2838255

    Article  CAS  Google Scholar 

  62. Bergman MJ, Gnan N, Obiols-Rabasa M, Meijer JM, Rovigatti L, Zaccarelli E, Schurtenberger P (2018) A new look at effective interactions between microgel particles. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-07332-5

    Article  CAS  Google Scholar 

  63. Donley GJ, Singh PK, Shetty A, Rogers SA (2020) Elucidating the G ″overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition. PNAS 117:21945–21952. https://doi.org/10.1073/pnas.2003869117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the UGC-NRC and DST-Purse at School of Physics (SOP), University of Hyderabad (UOH) for providing access to the wet chemistry lab for the synthesis of microgel particles and particle analyzer facility for the particle size analysis, respectively. Authors thank Prof. Soma Venugopal Rao, Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad and Mr. M. Praveen Kumar for useful discussions.

Funding

This work is supported by Science and Engineering Research Board (SERB), Core Grant Project (CRG) of Department of Science and Technology (DST), India (project number: DST-SERB/CRG/2019/003714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. R. Tata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 610 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saisavadas, M.V., Dhara, S., Joshi, R.G. et al. Large amplitude oscillatory shear studies on dense PNIPAM microgel colloidal glasses. Colloid Polym Sci 301, 599–611 (2023). https://doi.org/10.1007/s00396-023-05096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05096-z

Keywords

Navigation