Skip to main content
Log in

A novel green amino acid derivative hydrogel with multi-stimulus responsiveness

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Even though amino acid derivatives are always used as the building blocks to construct gels in supramolecular chemistry, there is still no report about N-alpha-Fmoc-L-valine (Fmoc-V) hydrogel induced by metal ions. Herein, a novel green Fmoc-V hydrogel with stimuli responsiveness was reported. A total of eight metal ions are applied to fabricate gels, but only Zn2+ and Cu2+ can induce Fmoc-V hydrogel formation. The formation of Fmoc-V hydrogel is verified by rheometer detection. FT-IR, UV–vis, and SAXS detections are used to study the formation mechanism of Fmoc-V hydrogel, implying hydrogen bond, metal–ligand, and π-π stacking interactions are the driving forces to gel formation. Moreover, this novel green hydrogel with high electrical conductivity performs multiple stimulus responsiveness to temperature, metal ion, and acid, illustrating its great potential applications in various areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Cheng L, Liu C, Wang J, Wang Y, Zha WH, Li XS (2022) Tough Hydrogel Coating on silicone rubber with improved antifouling and antibacterial properties. ACS Appl Polym Mater 4:3462–3472

    Article  CAS  Google Scholar 

  2. Kuang X, Arıcan MO, Zhou T, Zhao XH, Zhang YS (2022) Functional tough hydrogels: design, processing, and biomedical applications. Acc Mater Res. https://doi.org/10.1021/accountsmr.2c00026

    Article  Google Scholar 

  3. Gao YF, Peng XW, Wu QQ, Yang DL, Wang WD, Peng QY, Wang T, Wang JM, Liu JF, Zhang H, Zeng HB (2022) Hydrogen-bonding-driven multifunctional polymer hydrogel networks based on tannic acid. ACS Appl Polym Mater 4:1836–1845

    Article  CAS  Google Scholar 

  4. Singh P, Misra S, Das A, Roy S, Datta P, Bhattacharjee G, Satpati B, Nanda J (2019) Supramolecular hydrogel from an oxidized byproduct of tyrosine. ACS Appl Bio Mater 2:4881–4891

    Article  CAS  PubMed  Google Scholar 

  5. Laishram R, Sarkar S, Seth I, Khatun N, Aswal VK, Maitra U, George SJ (2022) Secondary nucleation-triggered physical cross-links and tunable stiffness in seeded supramolecular hydrogels. J Am Chem Soc 144:11306–11315

    Article  CAS  PubMed  Google Scholar 

  6. Hu YW, Gao SJ, Lu HF, Ying JY (2022) Acid-resistant and physiological pH-responsive DNA hydrogel composed of A-motif and i-motif toward oral insulin delivery. J Am Chem Soc 144:5461–5470

    Article  CAS  PubMed  Google Scholar 

  7. Alkekhia D, LaRose C, Shukla A (2022) β-Lactamase-responsive hydrogel drug delivery platform for bacteria-triggered cargo release. ACS Appl Mater Interfaces 14:27538–27550

    Article  CAS  PubMed  Google Scholar 

  8. Daly AC, Davidson MD, Burdick JA (2021) 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh J, Singh B, Vishavnath (2022) Designing starch-alginate hydrogels for controlled delivery of fungicide for the alleviation of environmental pollution. ACS Agric Sci Technol. https://doi.org/10.1021/acsagscitech.2c00213

    Article  Google Scholar 

  10. Clancy A, Chen D, Bruns J, Nadella J, Stealey S, Zhang YJ, Timperman ZSP (2022) Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture. Sci Rep 12:17781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang M, Wang LL, Cheng YB, Ma K, Wei XR, Jia PX, Gong YK, Zhang Y, Yang JF, Zhao J (2019) Light- and pH-responsive self-healing hydrogel. J Mater Sci 54:9983–9994

    Article  CAS  Google Scholar 

  12. Guo HL, Huang S, Yang XF, Wu JP, Kirk TB, Xu JK, Xu AD, Xue W (2021) Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel-sol transition and drug delivery properties for promoting periodontium regeneration in periodontitis. ACS Appl Mater Interfaces 13:61638–61652

    Article  CAS  PubMed  Google Scholar 

  13. Niu C, An L, Zhang HJ (2022) Mechanically robust, antifatigue, and temperature-tolerant nanocomposite ionogels enabled by hydrogen bonding as wearable sensors. ACS Appl Polym Mater 4:4189–4198

    Article  CAS  Google Scholar 

  14. Zhao LH, Yin S, Ma ZF (2019) Ca2+-triggered pH-response sodium alginate hydrogel precipitation for amplified sandwich-type impedimetric immunosensor of tumor marker. ACS Sens 4:450–455

    Article  CAS  PubMed  Google Scholar 

  15. Huang BX, Hu D, Dong A, Tian J, Zhang WA (2022) Highly antibacterial and adhesive hyaluronic acid hydrogel for wound repair. Biomacromol 23:4766–4777

    Article  CAS  Google Scholar 

  16. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromol 9:505–509

    Article  CAS  Google Scholar 

  17. Xing PY, Chu XX, Du GY, Li MZ, Su J, Hao AY, Hou YH, Li SY, Ma MF, Wu L, Yu QB (2013) Controllable self-growth of a hydrogel with multiple membranes. RSC Adv 3:15237

    Article  CAS  Google Scholar 

  18. Biswas S, Vasudevan A, Yadav N, Yadav S, Rawal P, Kaur I, Tripathi DM, Kaur S, Chauhan VS (2022) Chemically modified dipeptide based hydrogel supports three-dimensional growth and functions of primary hepatocytes. ACS Appl Bio Mater 9:4354–4365

    Article  Google Scholar 

  19. Jain D, Karajic A, Murawska M, Goudeau B, Bichon S, Gounel S, Mano N, Kuhn A, Barthélémy P (2017) Low-molecular-weight hydrogels as new supramolecular materials for bioelectrochemical interfaces. ACS Appl Mater Interfaces 9:1093–1098

    Article  CAS  PubMed  Google Scholar 

  20. Raymond DM, Abraham BL, Fujita T, Watrous MJ, Toriki ES, Takano T, Nilsson BL (2019) Low-molecular-weight supramolecular hydrogels for sustained and localized in vivo drug delivery. ACS Appl Bio Mater 2:2116–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao K, Levin A, Adler-Abramovich L, Gazit E (2016) Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem Soc Rev 45:3935–3953

    Article  CAS  PubMed  Google Scholar 

  22. Xing PY, Chu XX, Li SY, Ma MF, Hao AY (2014) Hybrid gels assembled from fmoc-amino acid and graphene oxide with controllable properties. Chem Phys Chem 15:2377–2385

    Article  CAS  PubMed  Google Scholar 

  23. Gahane AY, Ranjan P, Singh V, Sharma RK, Sinha N, Sharma M, Chaudhry R, Thakur AK (2018) Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter 14:2234–2244

    Article  CAS  PubMed  Google Scholar 

  24. Truong WT, Su YY, Gloria D, Braet F, Thordarson P (2015) Dissolution and degradation of Fmocdiphenylalanine self-assembled gels results in necrosis at high concentrations in vitro. Biomater Sci 3:298–307

    Article  CAS  PubMed  Google Scholar 

  25. Shao T, Falcone N, Kraatz HB (2020) Supramolecular peptide gels: influencing properties by metal ion coordination and their wide-ranging applications. ACS Omega 5:1312–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma MF, Kong LD, Du ZY, Xie ZY, Chen L, Chen RJ, Li ZQ, Liu J, Li ZL, Hao AY (2019) A novel stimulus-responsive temozolomide supramolecular vesicle based on host-guest recognition. Colloid Polym Sci 297:261–269

    Article  CAS  Google Scholar 

  27. Zhang YM, Li SY, Ma MF, Yang MM, Wang YJ, Hao AY, Xing PY (2016) Tuning of gel morphology with supramolecular chirality amplification using a solvent strategy based on an Fmoc-amino acid building block. New J Chem 40:5568–5576

    Article  CAS  Google Scholar 

  28. Ma MF, Wang B, Hao AY, Xing PY (2022) Efficient chirality transfer from chiral amines to oligo(p-phenylenevinylene)s to fabricate chiroptical materials. Nanoscale 14:8163–8171

    Article  CAS  PubMed  Google Scholar 

  29. Zhai XH, Bartel M, Brezesinski G, Rattay B, Möhwald H, Li JB (2005) Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) studies of amide phospholipids. Chem Phys Lipids 133:79–88

    Article  CAS  PubMed  Google Scholar 

  30. Liu MN, Wu MH, Li CC, Yu P, Feng SS, Li YW, Zhang QZ (2022) Interaction structure and affinity of zwitterionic amino acids with important metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) in aqueous solution: a theoretical study. Molecules 27:2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang CH, Gao H, Liang DM, Liu S, Zhang HJ, Guan HT, Wu YX, Zhang Y (2022) Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv Compos Hybrid Ma 5:2906–2920

    Article  CAS  Google Scholar 

  32. Park J, Kim KY, Kim C, Lee JH, Kim JH, Lee SS, Choi Y, Jung JH (2018) A crown-ether-based moldable supramolecular gel with unusual mechanical properties and controllable electrical conductivity prepared by cation-mediated cross-linking. Polym Chem 9:3900–3907

    Article  CAS  Google Scholar 

  33. Gao H, Wang CH, Yang ZJ, Zhang Y (2021) 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Compos Sci Technol 213:108896

    Article  CAS  Google Scholar 

Download references

Funding

We greatly acknowledge financial support by Young Backbone Teachers Visiting Scholar Program in China of Jining Medical University, the Undergraduate Training Programs for Innovation of Shandong Province (No. S202110443035) and Shandong Provincial Natural Science Foundation (No. ZR2019PB006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfang Ma or Wenqing Shang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Wang, T., Liu, R. et al. A novel green amino acid derivative hydrogel with multi-stimulus responsiveness. Colloid Polym Sci 301, 569–576 (2023). https://doi.org/10.1007/s00396-023-05095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05095-0

Keywords

Navigation