Skip to main content

Advertisement

Log in

Preparation and properties of P(IA-co-AA-co-AM) composite hydrogel via frontal polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Choline chloride (ChCl) was used as the hydrogen bond acceptor (HBA) and acrylic acid (AA) and acrylamide (AM) as the hydrogen bond donor (HBD), and the three materials were mixed in a certain molar ratio to obtain deep eutectic solvent (DES). Subsequently, P(IA-co-AA-co-AM) composite hydrogels were prepared by adding itaconic acid (IA) to DES using the frontal polymerization (FP) method. The hydrogels were characterized by Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the influence patterns of IA content on the mechanical properties, swelling properties, and pH responsiveness of the composite hydrogels were investigated. The results showed that the composite hydrogel exhibited a homogeneous porous structure. The elongation at the break of the composite hydrogel gradually increased with the increase of IA content, and the elongation of the FP4 sample reached 167%. The addition of IA increased the number of hydrophilic groups, resulting in a 2.14-fold increase in the equilibrium swelling of the composite hydrogel in distilled water. P(IA-co-AA-co-AM) composite hydrogels exhibit different swelling patterns in acidic and alkaline environments, making them promising for acid–base indicators, biosensors, and other applications. In this study, a simpler and greener method was proposed to prepare P(IA-co-AA-co-AM) composite hydrogels with pH responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meng Y, Zhou S, Liu F (2015) Research progress on intelligent hydrogel. Science Technology in Chemical Industry 23(1):66–71

    Google Scholar 

  2. Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose[J]. Carbohyd Polym 88(2):713–718

    Article  CAS  Google Scholar 

  3. Liu TY, Lin YL (2010) Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs[J]. Acta Biomater 6(4):1423–1429

    Article  CAS  PubMed  Google Scholar 

  4. Lee E, Kim B (2011) Preparation and characterization of pH-sensitive hydrogel microparticles as a biological on–off switch[J]. Polym Bull 67(1):67–76

    Article  CAS  Google Scholar 

  5. Bai H, Li C, Wang X et al (2010) A pH-sensitive graphene oxide composite hydrogel[J]. Chem Commun 46(14):2376–2378

    Article  CAS  Google Scholar 

  6. Ruan C, Zeng K, Grimes CA (2003) A mass-sensitive pH sensor based on a stimuli-responsive polymer[J]. Anal Chim Acta 497(1–2):123–131

    Article  CAS  Google Scholar 

  7. Zhu X (2020) Recent progress in biological functions of itaconic acid. Journal of Animal Nutrition 32(3):998–1002

    CAS  Google Scholar 

  8. Gao Y, Zhang F, Zhao G et al (2021) Research progress of itaconic acid fermentation[J]. China Biotechnology 41(5):105–113

    Google Scholar 

  9. Zhang SC, WenY F, Yang YG et al (2003) Effect of itaconic acid content on the thermal behavior of polyacrylonitrile[J]. New Carbon Mater 18(4):315–318

    CAS  Google Scholar 

  10. Pulat M, Eksi H (2010) Determination of swelling behavior and morphological properties of poly(acrylamide-co-itaconic acid) and poly(acrylic acid-co-itaconic acid) copolymeric hydrogels[J]. J Appl Polym Sci 102(6):5994–5999

  11. Wu YM, Zhang BQ, Wu T et al (2001) Properties of the forpolymer of N-vinylpyrrolidone with itaconic acid, acrylamide and 2-acrylamido-2-methyl-1-propane sulfonic acid as a fluid-loss reducer for drilling fluid at high temperatures[J]. Colloid Polym Sci 279:836–842

    Article  CAS  Google Scholar 

  12. Liu P, Hao J-W, Liang S-J, Liang G-L, Wang J-Y, Zhang Z-H (2015) Choline chloride and itaconic acid-based deep eutectic solvent as an efficient and reusable medium for the preparation of 13-aryl-5H-dibenzo[b, i]xanthene-5,7,12,14(13H)-tetraones. Monatshefte für Chemie - Chemical Monthly 147(4):801–808

    Article  Google Scholar 

  13. Katime I, Rodríguez E (2001) Absorption of metal ions and swelling properties of poly (acrylic acid-co-itaconic acid) hydrogels[J]. Journal of Macromolecular Science, Part A 38(5–6):543–558

    Article  Google Scholar 

  14. Caykara T, Doǧmuş M, Kantoǧlu Ö (2004) Network structure and swelling–shrinking behaviors of pH-sensitive poly (acrylamide-co-itaconic acid) hydrogels[J]. J Polym Sci, Part B: Polym Phys 42(13):2586–2594

    Article  CAS  Google Scholar 

  15. Alzari V, Monticelli O, Nuvoli D et al (2009) Stimuli responsive hydrogels prepared by frontal polymerization[J]. Biomacromol 10(9):2672–2677

    Article  CAS  Google Scholar 

  16. Washington RP, Steinbock O (2001) Frontal polymerization synthesis of temperature-sensitive hydrogels[J]. J Am Chem Soc 123(32):7933–7934

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Sui J, Chen L (2005) Segmented polyurethane synthesized by frontal polymerization[J]. Colloid Polym Sci 283:932–936

    Article  CAS  Google Scholar 

  18. Li S, Huang H, Tao M et al (2013) Frontal polymerization preparation of poly (acrylamide-co-acrylic acid)/activated carbon composite hydrogels for dye removal[J]. J Appl Polym Sci 129(6):3737–3745

    Article  CAS  Google Scholar 

  19. Mota-Morales JD, Gutiérrez MC, Sanchez IC et al (2011) Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium[J]. Chem Commun 47(18):5328–5330

    Article  CAS  Google Scholar 

  20. Li S, Zhang H, Feng J et al (2011) Facile preparation of poly (acrylic acid–acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution[J]. Desalination 280(1–3):95–102

    Article  CAS  Google Scholar 

  21. Li B, Liu J, Fu D et al (2021) Rapid preparation of PAM/N-CNT nanocomposite hydrogels by DEM frontal polymerization and its performance study[J]. RSC Adv 11(56):35268–35273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mota-Morales JD, Sánchez-Leija RJ, Carranza A et al (2018) Free-radical polymerizations of and in deep eutectic solvents: green synthesis of functional materials[J]. Prog Polym Sci 78:139–153

    Article  CAS  Google Scholar 

  23. Zhang Q, Vigier KDO, Royer S et al (2012) Deep eutectic solvents: syntheses, properties and applications[J]. Chem Soc Rev 41(21):7108–7146

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Greaves TL, Warr GG et al (2017) Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea[J]. Chem Commun 53(15):2375–2377

    Article  CAS  Google Scholar 

  25. Li S, Chen Y, Zhu Y et al (2022) Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers[J]. Colloid Polym Sci 300(8):989–998

    Article  CAS  Google Scholar 

  26. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications[J]. Chem Rev 114(21):11060–11082

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Li S, Yan S (2021) Starch as a reinforcement agent for poly (ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization[J]. Carbohyd Polym 263:117996

    Article  CAS  Google Scholar 

  28. Li B, Xu X, Hu Z et al (2022) Rapid preparation of N-CNTs/P (AA-co-AM) composite hydrogel via frontal polymerization and its mechanical and conductive properties[J]. RSC Adv 12(30):19022–19028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mota-Morales JD, Gutiérrez MC, Ferrer ML et al (2013) Deep eutectic solvents as both active fillers and monomers for frontal polymerization[J]. J Polym Sci, Part A: Polym Chem 51(8):1767–1773

    Article  CAS  Google Scholar 

  30. Irfan M, Du XY, Xu XR et al (2019) Synthesis and characterization of pH-sensitive poly (IA-co-AAc-co-AAm) hydrogels via frontal polymerization[J]. J Polym Sci, Part A: Polym Chem 57(22):2214–2221

    Article  CAS  Google Scholar 

  31. Li S, Wang H, Huang W et al (2014) Facile preparation of pH-sensitive poly (acrylic acid-co-acrylamide)/SiO2 hybrid hydrogels with high strength by in situ frontal polymerization[J]. Colloid Polym Sci 292(1):107–113

    Article  CAS  Google Scholar 

  32. Gopaliya D, Kumar V, Khare SK (2021) Recent advances in itaconic acid production from microbial cell factories[J]. Biocatal Agric Biotechnol 36:102130

    Article  CAS  Google Scholar 

  33. Zhou J, Tang WQ, Wang CF et al (2012) In situ access to white light-emitting fluorescent polymer nanocomposites via plasma-ignited frontal polymerization[J]. J Polym Sci, Part A: Polym Chem 50(18):3736–3742

    Article  CAS  Google Scholar 

  34. Karadağ E, Saraydın D, Güven O (2001) Radiation induced superabsorbent hydrogels. acrylamide/itaconic acid copolymers[J]. Macromol Mat Eng 286(1): 34–42.

  35. Hu X, Liu J, He Q et al (2016) Aqueous compatible boron nitride nanosheets for high-performance hydrogels[J]. Nanoscale 8(7):4260–4266

    Article  CAS  PubMed  Google Scholar 

  36. Guo JT, Ti Y, Li LN, Li L (2007) Preparation and characterization of pH-sensitive P(IA/AM) hydrogel microparticles. J Tianjin Univ 40(4):427–431

    CAS  Google Scholar 

  37. Ding XF, Liu LP, Zhang HW et al (2004) Synthesis and properties of meyconate cross-linked amphoteric mesh cage resin. Chemical Research 15(3):33–35

    CAS  Google Scholar 

  38. Wan Y (2014) Synthesis and properties of low-molecular-weight acrylic acid-clathrate copolymers[D]. Zhengzhou University

  39. Dai H, Huang H (2017) Enhanced swelling and responsive properties of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogel by the introduction of carclazyte[J]. J Agric Food Chem 65(3):565–574

    Article  CAS  PubMed  Google Scholar 

  40. Chao GT, Qian ZY, Huang MJ et al (2008) Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly (ethylene glycol) [J]. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 85(1):36–46

    Article  Google Scholar 

  41. Feng LJ, Yuan JX, Lei HB et al (2016) Preparation of poly acrylic acid acrylamide nanometer material and its drug delivery control potential in alkaline condition[C]//Materials Science Forum. Trans Tech Publications Ltd 873:84–88

    Google Scholar 

  42. Bates J (2013) pH-responsive hydrogel-based chemomechanical sensors designed for disposable bioreactor applications[M]. The University of Utah

Download references

Funding

The work is supported by the 2022 Knowledge Innovation Dawn Special Plan Project (2022010801020393), the Marine Defense Technology Innovation Center Innovation Fund (JJ-2020–719-01), the Natural Science Foundation of Hubei Province (2021CFB292), and the Research and Innovation Initiatives of WHPU (2022J04). This work was finished at Wuhan Polytechnic University, Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Hao, W., Xu, X. et al. Preparation and properties of P(IA-co-AA-co-AM) composite hydrogel via frontal polymerization. Colloid Polym Sci 301, 445–453 (2023). https://doi.org/10.1007/s00396-023-05079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05079-0

Keywords

Navigation