Skip to main content
Log in

Physicochemical properties of piroxicam in ionic-mixed micellar medium: effect of charge on the micellization behaviour

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The physicochemical property of water-insoluble drug piroxicam (PY) in the presence of two.

ionic-mixed micellar systems was investigated. The two systems were pluronic L-81-sodium dodecyl sulfate (SDS), a nonionic-anionic; and pluronic L-81-cetyl pyridinium bromide (CPB), a nonionic-cationic. The characterizations employed were UV–visible spectroscopy, FTIR spectroscopy, conductivity, cloud point and cyclic voltammetry measurements. The results from UV spectra showed that there was different behaviour of piroxicam with anionic and cationic mixed micelles. But, the common observation for both sets was that the drug absorption with a mixed micellar system displayed an intermediate position compared to both the single micellar systems. There was short and strong bond formation in the complex formed between piroxicam and mixed micelles as evidenced by FTIR studies. The conductivity measurements revealed that the drug and mixed micelle in the produced complex have a stable and spontaneous binding. The free energy of micellization ∆Gm was observed to be -18.04 kJ/mole for piroxicam [PY + L-81] + SDSa group and -37.73 kJ/mole for piroxicam [PY + L-81] + CPBc group. The higher negative value of the nonionic-cationic system indicates greater stability of the drug in the system. The cloud point measurements corroborated this finding. The cyclic voltammetry study of piroxicam with ionic surfactant SDS/CPB displays greater electrostatic interaction in mixed micelle combination (PY/CPB/L-81) compared to single micelle combination (PY/CPB) and pure drug. The combination is novel for the hydrophobic drug piroxicam which can be used by the formulation scientist.

Graphical abstract

Interaction of drug (PY) and surfactant (SDS/CPB) presence of pluronic L-81

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geckle JM, Rescek DM, Whipple EB (1989) Zwitterionic piroxicam in polar solution. Magn Reson Chem 27:150–154

    Article  CAS  Google Scholar 

  2. Chakraborty H, Sarkar M (2004) Optical Spectroscopic and TEM studies of catanionic micelles of CTAB / SDS and their interaction with a NSAID. Langmuir 20:3551–3558

    Article  CAS  Google Scholar 

  3. Bordner J, Hammen PD, Whipple EB (1989) Deuterium isotope effects on carbon-13 NMR shifts and the tautomeric equilibrium in N-substituted pyridyl derivatives of piroxicam. J Am Chem Soc 111:6572–6578. https://doi.org/10.1021/ja00199a015

    Article  CAS  Google Scholar 

  4. Redenti E, Zanol M, Ventura P et al (1999) Raman and solid state 13 C-NMR investigation of the structure of the 1: 1 amorphous piroxicam : ␤ -cyclodextrin inclusion compound. Biospectroscopy 5:243–251

    Article  CAS  Google Scholar 

  5. Chakraborty H, Banerjee R, Sarkar M (2003) Incorporation of NSAIDs in micelles: Implication of structural switchover in drug-membrane interaction. Biophys Chem 104:315–325. https://doi.org/10.1016/S0301-4622(02)00389-7

    Article  CAS  Google Scholar 

  6. Chakraborty H, Sarkar M (2005) Interaction of piroxicam with micelles : Effect of hydrophobic chain length on structural switchover. Biophys Chem 117:79–85. https://doi.org/10.1016/j.bpc.2005.04.016

    Article  CAS  Google Scholar 

  7. Dey A, Sandre V, Marangoni DG, Ghosh S (2018) Interaction between a non-steroidal anti inflammatory and an anionic surfactant(AOT) and effects of salt (NAI) hydrotrope(4–4-4). J Phys Chem B 122:3974–3987. https://doi.org/10.1021/acs.jpcb.8b00687

    Article  CAS  Google Scholar 

  8. Ghosh S, Mondal S (2012) Spectroscopic study on the medicinal pigment, Curcumin with various surfactants: An overview. J Surf Sci Technol 28:179–195

    CAS  Google Scholar 

  9. Yadav T, Tikariha D, Lakra J, Tiwari AK, Saha SK, Gosh KK (2014) Surface properties of amphiphilic drugs in presence of cationic surfactants. J Surf Sci Technol 30(3–4):93–110

    Google Scholar 

  10. Chakraborty H, Chakraborty PK, Raha S et al (2007) Interaction of piroxicam with mitochondrial membrane and cytochrome c. Biochem Biophys Acta 1768:1138–1146. https://doi.org/10.1016/j.bbamem.2007.01.004

    Article  CAS  Google Scholar 

  11. Seo SH, Kim E, Joo Y et al (2020) A mixed micellar formulation for the transdermal delivery of an Indirubin analog. Pharmaceutics 12:1–10. https://doi.org/10.3390/pharmaceutics12020175

    Article  CAS  Google Scholar 

  12. Fathy M, El-Badry M (2003) Preparation and evaluation of piroxicam - pluronic solid dispersions. Bull Pharm Sci Assiut 26:97–108. https://doi.org/10.21608/bfsa.2003.65474

    Article  CAS  Google Scholar 

  13. Wang Y, Li Y, Zhang L, Fang X (2008) Pharmacokinetics and biodistribution of paclitaxel-loaded pluronic P105 polymeric micelles. Arch Pharmacal Res 31:530–538. https://doi.org/10.1007/s12272-001-1189-2

    Article  CAS  Google Scholar 

  14. Kwon SH, Kim SY, Ha KW et al (2007) Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharmacal Res 30:1138–1143

    Article  CAS  Google Scholar 

  15. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130:98–106. https://doi.org/10.1016/j.jconrel.2008.04.013

    Article  CAS  Google Scholar 

  16. Ghosh S (2001) Surface Chemical and Micellar Properties of Binary and Ternary Surfactant Mixtures (Cetyl Pyridinium Chloride, Tween-40, and Brij-56) in Aqueous Medium. J Colloid Interface Sci 244:128–138. https://doi.org/10.1006/jcis.2001.7855

    Article  CAS  Google Scholar 

  17. Chakraborty T, Ghosh S (2008) A unique survey of applicability of theories of mixed adsorbed film and mixed micellization. J Surfactants Deterg 11:323–334. https://doi.org/10.1007/s11743-010-1243-2

    Article  CAS  Google Scholar 

  18. Wang Y, Yu L, Han L et al (2007) Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73. https://doi.org/10.1016/j.ijpharm.2006.12.033

    Article  CAS  Google Scholar 

  19. Gao Y, Li LB, Zhai G (2008) Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B 64:194–199. https://doi.org/10.1016/j.colsurfb.2008.01.021

    Article  CAS  Google Scholar 

  20. Alakhov V, Klinski E, Li S et al (1999) Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloids Surf B 16:113–134. https://doi.org/10.1016/S0927-7765(99)00064-8

    Article  CAS  Google Scholar 

  21. Tehrani-Bagha AR, Singh RG, Holmberg K (2013) Solubilization of two organic dyes by anionic, cationic and nonionic surfactants. Colloids Surf A 417:133–139. https://doi.org/10.1016/j.colsurfa.2012.10.006

    Article  CAS  Google Scholar 

  22. Lee ES, Oh YT, Youn YS et al (2011) Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids Surf B 82:190–195. https://doi.org/10.1016/j.colsurfb.2010.08.033

    Article  CAS  Google Scholar 

  23. Muhammad MT, Khan MN (2017) Study of electrolytic effect on the interaction between anionic surfactant and methylene blue using spectrophotometric and conductivity methods. J Mol Liq 234:309–314. https://doi.org/10.1016/j.molliq.2017.03.102

    Article  CAS  Google Scholar 

  24. Klopas A, Panderi I (2018) Determination of piroxicam and its major metabolite 5-hydroxypiroxicam in human plasma by zero-crossing first-derivative spectrophotometry D12 Determination of piroxicam and its major metabolite 5-hydroxypiroxicam in human plasma by zero-crossing first-de. J Pharm Biomed Anal 7085:515–524. https://doi.org/10.1016/S0731-7085(97)00230-6

    Article  Google Scholar 

  25. Mostafa GAE, Al-dosseri AS, Al-badr AA (2020) Piroxicam. Profiles Drug Subst 45:1–276. https://doi.org/10.1016/bs.podrm.2019.10.007

    Article  CAS  Google Scholar 

  26. Banerjee R, Chakraborty H, Sarkar M (2003) Photophysical studies of oxicam group of NSAIDs: Piroxicam, meloxicam and tenoxicam. Spectrochim Acta A Mol Biomol Spectrosc 59:1213–1222. https://doi.org/10.1016/S1386-1425(02)00300-1

    Article  CAS  Google Scholar 

  27. Al-Soufi W, Novo M (2021) A surfactant concentration model for the systematic determination of the critical micellar concentration and the transition width. Molecules. https://doi.org/10.3390/molecules26175339

    Article  Google Scholar 

  28. Fathy M (2004) Properties of solid dispersion of piroxicam in Pluronic F-98. J Drug Deliv Sci Technol 14:199–205. https://doi.org/10.1016/S1773-2247(04)50101-6

    Article  Google Scholar 

  29. Vrecer F, Srcic S, Smid-Korbar J (1991) Investigation of piroxicam polymorphism. Int J Pharm 68:35–41. https://doi.org/10.1016/0378-5173(91)90124-7

    Article  CAS  Google Scholar 

  30. Lagudu URK, Korkmaz S, Gowda A et al (2019) Reactive liquids for non – prestonian chemical mechanical polishing of polysilicon films. ECS J Solid State Sci Technol 8:3040–3046. https://doi.org/10.1149/2.0081905jss

    Article  CAS  Google Scholar 

  31. Pandit V, Patel V (2019) Formulation and Evaluation of Buccal Films of Saxagliptin. Int J Pharm Biol Sci Arch 7:1–11. https://doi.org/10.32553/ijpba.v7i2.119

    Article  Google Scholar 

  32. Noor S, Taj MB (2021) Mixed-micellar approach for enhanced dye entrapment: A spectroscopic study. J Mol Liq 338:116701. https://doi.org/10.1016/j.molliq.2021.116701

    Article  CAS  Google Scholar 

  33. Tsai R-S, Carrupt P-A, El TN et al (1993) Physicochemical and Structural Properties of Non-Steroidal Anti-inflammatory Oxicams. Helv Chim Acta 76:842–854. https://doi.org/10.1002/hlca.19930760208

    Article  CAS  Google Scholar 

  34. Cookey GA, Nwokobia FU (2014) Conductivity Studies of Binary Mixtures of Ionic and Non-ionic Surfactants at different Temperatures and Concentrations. J Appl Sci Environ Manage 18(3):530–534. https://doi.org/10.4314/jasem.v18i3.21

    Article  CAS  Google Scholar 

  35. Kancharla S, Zoyhofski NA, Bufalini L et al (2020) Association between nonionic amphiphilic polymer and ionic surfactant in aqueous solutions: Effect of polymer hydrophobicity and micellization. Polymers 12:1–23. https://doi.org/10.3390/POLYM12081831

    Article  Google Scholar 

  36. Elarbi FM, Janger AA, Abu-sen LM (2020) Determination of CMC and interfacial properties of anionic ( SDS ) and cationic ( CPB ) surfactants in aqueous solutions Determination of CMC and interfacial properties of anionic ( SDS ) and cationic ( CPB ) surfactants in aqueous solutions. Am J Eng Res (AJER) 9:118–126

    Google Scholar 

  37. Ghosh S, Moulik SP (1999) The Clouding Behaviours of Binary Mixtures of Polyoxyethylene (10) cetyl ether (Brij-56) with Polyvinyl Alcohol (PVA) and Methyl Cellulose (MC), Indian. J Chem 38A:201–208

    CAS  Google Scholar 

  38. Ghosh S, Moulik SP (1999) Clouding Behaviors of Binary Mixtures of Triton X-100 / Tween-80 and Tween-20 / Brij-35 and the Influences of the Ionic Surfactants SDS and CTAB as well as the water soluble Polymers PVA and PVP on their Cloud Points. Ind J Chem 38A:10–16

    CAS  Google Scholar 

  39. Patel T, Bahadur P, Mata J (2010) The clouding behaviour of PEO-PPO based triblock copolymers in aqueous ionic surfactant solutions: A new approach for cloud point measurements. J Colloid Interface Sci 345:346–350. https://doi.org/10.1016/j.jcis.2010.01.079

    Article  CAS  Google Scholar 

  40. Lad K, Bahadur A, Pandyat K, Bahadur P (1995) Clouding and aggregation behaviour of ethylene oxide/propylene oxide/ethylene oxide block copolymers in aqueous media in the presence of sodium dodecyl sulphate. Ind J Chem 34:938–945

    Google Scholar 

  41. Vyas B, Pillai SA, Bahadur P (2020) Influence of surfactant’s polar head group charge on the self-assembly of three PEO–PPO–PEO triblock copolymers of widely varying hydrophobicity. J Mol Liq 316:113858. https://doi.org/10.1016/j.molliq.2020.113858

    Article  CAS  Google Scholar 

  42. Rahman MM, Mollah MYA, Rahman MM, Susan MABH (2013) Electrochemical behavior of malachite green in aqueous solutions of ionic surfactants. ISRN Electrochem 2013:1–10. https://doi.org/10.1155/2013/839498

    Article  CAS  Google Scholar 

  43. Kouskouki A, Chatzisymeon E, Mantzavinos D, Frontistis Z (2019) Electrochemical degradation of piroxicam on a boron-doped diamond anode: investigation of operating parameters and ultrasound synergy. ChemElectroChem 6:841–847. https://doi.org/10.1002/celc.201800971

    Article  CAS  Google Scholar 

  44. Schulz EN, Schulz EP, Schulz PC (2017) Electrochemistry of Surfactants. Appl Character Surf. https://doi.org/10.5772/67975

    Article  Google Scholar 

  45. de Macêdo IYL, Alecrim MF, Neto JRO et al (2020) Piroxicam voltammetric determination by ultra low cost pencil graphite electrode. Braz J Pharm Sci. https://doi.org/10.1590/s2175-97902019000317344

    Article  Google Scholar 

  46. Serbanescu I, Bulcu D, Volanschi E (2005) Electrochemical Study of the Interaction of Doxorubicin With Anionic Surfactants (Sodium Lauryl Sulfate)Department of Physical Chemistry. University of Bucharest, Faculty of Chemistry, pp 369–376

    Google Scholar 

  47. Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) Characterization and electrochemical investigations of micellar/drug interactions. Electrochim Acta 56:2510–2517. https://doi.org/10.1016/j.electacta.2010.11.034

    Article  CAS  Google Scholar 

  48. Mandal AB, Nair BU (1991) Cyclic voltammetric technique for the determination of the critical micelle concentration of surfactants, self-diffusion coefficient of micelles, and partition coefficient of an electrochemical probe. J Phys Chem 95:9008–9013. https://doi.org/10.1021/j100175a106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Applied Communication and Control, Dehradun; MMC health care limited, Chennai, for providing support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasmita Dash.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunanithi, P., R, V. & Dash, S. Physicochemical properties of piroxicam in ionic-mixed micellar medium: effect of charge on the micellization behaviour. Colloid Polym Sci 300, 1355–1368 (2022). https://doi.org/10.1007/s00396-022-05027-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05027-4

Keywords

Navigation