Skip to main content
Log in

Rheology and microscopy analysis of polymer–surfactant complexes

  • Review Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyelectrolytes are a fascinating type of polymeric substance that is increasingly being employed in sophisticated industrial formulations. Combining these polymers with a surfactant results in a solution with unique behaviour and formation due to a mixture of hydrophobic and hydrophilic interactions at both the large (polymer) and tiny (surfactant) molecular scales. In this study, we look at the literature on polyelectrolyte–surfactant complexes on a molecular level, using mostly rheology and TEM to cover all the elements that go into producing them and the interplay that exists between distinct molecular interacting types. This study was assembled from over 300 sources to investigate a wide range of rich polymer\surfactant complex systems with a variety of uses, some of which had a basic purpose of understanding the effects of alteration on the behaviour of these systems. Gene therapy, drug administration, oil recovery, and nanoparticle manufacturing are among the target applications of surfactant polymer systems, according to the literature. Most of the published literature focuses on changing the type of surfactant (e.g., Gemini or single-chain surfactant), changing the system (exchanging polymer or surfactant), functionalizing surfactant\polymer, making the surfactant or polymer less hydrophobic for better binding, and then studying and exploring the formed complexes using a variety of techniques.

Graphical abstract

Rich rheological behaviour of polymer\surfactant system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi Moud A, Hatzikiriakos SG (2022) Kaolinite colloidal suspensions under the influence of sodium dodecyl sulfate. Phys Fluids 34(1):013107

    Article  CAS  Google Scholar 

  2. Gahrooee TR, Moud AA, Danesh M, Hatzikiriakos SG (2021) Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohyd Polym 257:117552

    Article  CAS  Google Scholar 

  3. Wang P, Pei S, Wang M, Yan Y, Sun X, Zhang J (2017) Study on the transformation from linear to branched wormlike micelles: An insight from molecular dynamics simulation. J Colloid Interface Sci 494:47–53

    Article  CAS  PubMed  Google Scholar 

  4. Yakovlev DS, Boek ES (2007) Molecular dynamics simulations of mixed cationic/anionic wormlike micelles. Langmuir 23(12):6588–6597

    Article  CAS  PubMed  Google Scholar 

  5. Moud AA, Arjmand M, Liu J, Yang Y, Sanati-Nezhad A, Hejazi SH (2019) Cellulose nanocrystal structure in the presence of salts. Cellulose 26(18):9387–9401

    Article  CAS  Google Scholar 

  6. Moud AA (2022) Recent advances in utility of artificial intelligence towards multiscale colloidal based materials design. Colloid and Interface Science Communications 47:100595

    Article  CAS  Google Scholar 

  7. Moud AA (2022) Asphaltene induced changes in rheological properties: A review. Fuel 316:123372

    Article  CAS  Google Scholar 

  8. Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2021) Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids Surf, A 609:125577

    Article  CAS  Google Scholar 

  9. Moud AA, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2020) Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media. Cellulose 27(10):5729–5743

    Article  CAS  Google Scholar 

  10. Jain N, Trabelsi S, Guillot S, McLoughlin D, Langevin D, Letellier P, Turmine M (2004) Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir 20(20):8496–8503

    Article  CAS  PubMed  Google Scholar 

  11. Abbasi Moud A (2020) Gel development using cellulose nanocrystals, PhD thesis, University of Calgary

  12. Abbasi Moud A, Kamkar M, Sanati-Nezhad A, Hejazi SH, Sundararaj U (2020) Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure in the presence of salt in aqueous media. Cellulose 27(10):5729–5743

    Article  CAS  Google Scholar 

  13. Abbasi Moud A, Piette J, Danesh M, Georgiou GC, Hatzikiriakos SG (2022) Apparent slip in colloidal suspensions. J Rheol 66(1):79–90

    Article  CAS  Google Scholar 

  14. Abbasi Moud A, Poisson J, Hudson ZM, Hatzikiriakos SG (2021) Yield stress and wall slip of kaolinite networks. Phys Fluids 33(5):053105

    Article  CAS  Google Scholar 

  15. Saito S (1967) Solubilization properties of polymer-surfactant complexes. J Colloid Interface Sci 24(2):227–234

    Article  CAS  Google Scholar 

  16. Qi S, Roser S, Edler KJ, Pigliacelli C, Rogerson M, Weuts I, Van Dycke F, Stokbroekx S (2013) Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res 30(1):290–302

    Article  PubMed  CAS  Google Scholar 

  17. Lee HJ, McAuley A, Schilke KF, McGuire J (2011) Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 63(13):1160–1171

    Article  CAS  PubMed  Google Scholar 

  18. Bureiko A, Trybala A, Kovalchuk N, Starov V (2015) Current applications of foams formed from mixed surfactant–polymer solutions. Adv Coll Interface Sci 222:670–677

    Article  CAS  Google Scholar 

  19. Hongyan W, Xulong C, Jichao Z, Aimei Z (2009) Development and application of dilute surfactant–polymer flooding system for Shengli oilfield. J Petrol Sci Eng 65(1–2):45–50

    Article  CAS  Google Scholar 

  20. Olajire AA (2014) Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 77:963–982

    Article  CAS  Google Scholar 

  21. Ding L, Wu Q, Zhang L, Guérillot D (2020) Application of fractional flow theory for analytical modeling of surfactant flooding, polymer flooding, and surfactant/polymer flooding for chemical enhanced oil recovery. Water 12(8):2195

    Article  CAS  Google Scholar 

  22. Kamal MS, Shakil Hussain S, Sultan AS (2016) Development of novel amidosulfobetaine surfactant–polymer systems for EOR applications. J Surfactants Deterg 19(5):989–997

    Article  CAS  Google Scholar 

  23. Lindman B, Antunes F, Aidarova S, Miguel M, Nylander T (2014) Polyelectrolyte-surfactant association—from fundamentals to applications. Colloid J 76(5):585–594

    Article  CAS  Google Scholar 

  24. Ainalem M-L, Bartles A, Muck J, Dias RS, Carnerup AM, Zink D, Nylander T (2014) DNA compaction induced by a cationic polymer or surfactant impact gene expression and DNA degradation. PLoS ONE 9(3):e92692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dias R, Lindman B (2008) DNA interactions with polymers and surfactants. ISBN: 978-0-470-28635-7, John Wiley & Sons

  26. Cárdenas M, Schillén K, Nylander T, Jansson J, Lindman B (2004) DNA Compaction by cationic surfactant in solution and at polystyrene particle solution interfaces: a dynamic light scattering study. Phys Chem Chem Phys 6(7):1603–1607

    Article  Google Scholar 

  27. Bromberg L (2001) Interactions among proteins and hydrophobically modified polyelectrolytes. J Pharm Pharmacol 53(4):541–547

    Article  CAS  PubMed  Google Scholar 

  28. Bromberg L, Temchenko M, Colby RH (2000) Interactions among hydrophobically modified polyelectrolytes and surfactants of the same charge. Langmuir 16(6):2609–2614

    Article  CAS  Google Scholar 

  29. Anghel DF, Saito S, Iovescu A, Baran A (1994) Some critical points in the interaction between homogeneous non-ionic surfactants and poly (acrylic acid). Colloids Surf, A 90(1):89–94

    Article  CAS  Google Scholar 

  30. De Oliveira VA, Tiera MJ, Neumann MG (1996) Interaction of Cationic Surfactants with Acrylic Acid− Ethyl Methacrylate Copolymers. Langmuir 12(3):607–612

    Article  Google Scholar 

  31. Schillén K, Anghel DF, da Graça Miguel M, Lindman B (2000) Association of naphthalene-labeled poly (acrylic acid) and interaction with cationic surfactants. Fluorescence studies Langmuir 16(26):10528–10539

    Google Scholar 

  32. Bakshi MS, Sachar S (2004) Surfactant polymer interactions between strongly interacting cationic surfactants and anionic polyelectrolytes from conductivity and turbidity measurements. Colloid Polym Sci 282(9):993–999

    Article  CAS  Google Scholar 

  33. Svensson AV, Huang L, Johnson ES, Nylander T, Piculell L (2009) Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. ACS Appl Mater Interfaces 1(11):2431–2442

  34. Santos O, Johnson ES, Nylander T, Panandiker RK, Sivik MR, Piculell L (2010) Surface adsorption and phase separation of oppositely charged polyion− surfactant ion complexes: 3. Effects of polyion hydrophobicity. Langmuir 26(12):9357–9367

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang J, Wang Y, Yan H (2004) Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution. Langmuir 20(21):9014–9018

    Article  CAS  PubMed  Google Scholar 

  36. Chakraborty T, Chakraborty I, Ghosh S (2006) Sodium carboxymethylcellulose− CTAB interaction: a detailed thermodynamic study of polymer− surfactant interaction with opposite charges. Langmuir 22(24):9905–9913

    Article  CAS  PubMed  Google Scholar 

  37. Asnacios A, Klitzing RV, Langevin D (2000) Mixed monolayers of polyelectrolytes and surfactants at the air–water interface. Colloids Surf, A Physicochem Eng Asp 167(1–2):189–197

  38. Chen W, Chen H, Hu J, Yang W, Wang C (2006) Synthesis and characterization of polyion complex micelles between poly (ethylene glycol)-grafted poly (aspartic acid) and cetyltrimethyl ammonium bromide. Colloids Surf, A 278(1–3):60–66

    Article  CAS  Google Scholar 

  39. Chandar P, Somasundaran P, Turro N (1988) Fluorescence probe investigation of anionic polymer-cationic surfactant interactions. Macromolecules 21(4):950–953

    Article  CAS  Google Scholar 

  40. Winnik FM, Regismond ST (1996) Fluorescence methods in the study of the interactions of surfactants with polymers. Colloids Surf, A 118(1–2):1–39

    Article  CAS  Google Scholar 

  41. Kogej K, Škerjanc J (1999) Fluorescence and conductivity studies of polyelectrolyte-induced aggregation of alkyltrimethylammonium bromides. Langmuir 15(12):4251–4258

    Article  CAS  Google Scholar 

  42. Hansson P (2001) A fluorescence study of divalent and monovalent cationic surfactants interacting with anionic polyelectrolytes. Langmuir 17(14):4161–4166

    Article  CAS  Google Scholar 

  43. Yan P, Jin C, Wang C, Ye J, Xiao J-X (2005) Effect of surfactant head group size on polyelectrolyte–surfactant interactions: steady-state and time-resolved fluorescence study. J Colloid Interface Sci 282(1):188–192

    Article  CAS  PubMed  Google Scholar 

  44. Goddard ED (1986) Polymer—surfactant interaction Part I. uncharged water-soluble polymers and charged surfactants. Colloids Surf 19(2–3):255–300

  45. Szutkowski K, Kołodziejska Ż, Pietralik Z, Zhukov I, Skrzypczak A, Materna K, Kozak M (2018) Clear distinction between CAC and CMC revealed by high-resolution NMR diffusometry for a series of bis-imidazolium gemini surfactants in aqueous solutions. RSC Adv 8(67):38470–38482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Svensson A, Piculell L, Cabane B, Ilekti P (2002) A new approach to the phase behavior of oppositely charged polymers and surfactants. J Phys Chem B 106(5):1013–1018

    Article  CAS  Google Scholar 

  47. Zhou S, Yeh F, Burger C, Chu B (1999) Formation and transition of highly ordered structures of polyelectrolyte− surfactant complexes. J Phys Chem B 103(12):2107–2112

    Article  CAS  Google Scholar 

  48. Cabane B (1977) Structure of some polymer-detergent aggregates in water. J Phys Chem 81(17):1639–1645

    Article  CAS  Google Scholar 

  49. Nagarajan R, Ganesh K (1989) Block copolymer self-assembly in selective solvents: Spherical micelles with segregated cores. J Chem Phys 90(10):5843–5856

    Article  CAS  Google Scholar 

  50. Nagarajan R (1985) Thermodynamics of nonionic polymer—micelle association. Colloids Surf 13:1–17

    Article  CAS  Google Scholar 

  51. Khan N, Brettmann B (2019) Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers 11(1):51

    Article  CAS  Google Scholar 

  52. Gradzielski M, Hoffmann I (2018) Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Curr Opin Colloid Interface Sci 35:124–141

    Article  CAS  Google Scholar 

  53. Ospennikov AS, Gavrilov AA, Artykulnyi OP, Kuklin AI, Novikov VV, Shibaev AV, Philippova OE (2021) Transformations of wormlike surfactant micelles induced by a water-soluble monomer. J Colloid Interface Sci 602:590–601

    Article  CAS  PubMed  Google Scholar 

  54. Lai L, Mei P, Wu X-M, Hou C, Zheng Y-C, Liu Y (2014) Micellization of anionic gemini surfactants and their interaction with polyacrylamide. Colloid Polym Sci 292(11):2821–2830

    Article  CAS  Google Scholar 

  55. Barbosa S, Taboada P, Castro E, Mosquera V (2006) Influence of SDS and two anionic hydrotropes on the micellized state of the triblock copolymer E71G7E71. J Colloid Interface Sci 296(2):677–684

    Article  CAS  PubMed  Google Scholar 

  56. Mahajan RK, Kaur N, Bakshi MS (2005) Cyclic voltammetry investigation of the mixed micelles of cationic surfactants with pluronic F68 and TritonX-100. Colloids Surf, A 255(1–3):33–39

    Article  CAS  Google Scholar 

  57. Bakshi MS, Sharma P, Kaur G, Sachar S, Banipal TS (2006) Synergisitc mixing of L64 with various surfactants of identical hydrophobicity under the effect of temperature. Colloids Surf, A 278(1–3):218–228

    Article  CAS  Google Scholar 

  58. Faustino CM, Calado AR, Garcia-Rio L (2009) Gemini surfactant− protein interactions: Effect of pH, temperature, and surfactant stereochemistry. Biomacromol 10(9):2508–2514

    Article  CAS  Google Scholar 

  59. Qiu L-G, Cheng M-J, Xie A-J, Shen Y-H (2004) Study on the viscosity of cationic gemini surfactant–nonionic polymer complex in water. J Colloid Interface Sci 278(1):40–43

    Article  CAS  PubMed  Google Scholar 

  60. Guo Y, Chen T, Zhao N, Shang Y, Liu H (2013) Dilational properties of gemini surfactant/polymer systems at the air–water surface. Colloid Polym Sci 291(4):845–854

    Article  CAS  Google Scholar 

  61. Das S, Mukherjee I, Paul BK, Ghosh S (2014) Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies. Langmuir 30(42):12483–12493

    Article  CAS  PubMed  Google Scholar 

  62. Zhao X, Shang Y, Hu J, Liu H, Hu Y (2008) Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12. Biophys Chem 138(3):144–149

    Article  CAS  PubMed  Google Scholar 

  63. Mirgorodskaya A, Yatskevich E, Zakharova LY, Konovalov A (2012) Gemini surfactant-nonionic polymer mixed micellar systems. Colloid J 74(1):91–98

    Article  CAS  Google Scholar 

  64. Narayanan J, Deotare VW (1999) Salt-induced liquid-liquid phase separation of protein-surfactant complexes. Phys Rev E 60(4):4597

    Article  CAS  Google Scholar 

  65. Öztekin N, Erim FB (2013) Determination of critical aggregation concentration in the poly-(vinylpyrrolidone)–sodium dodecyl sulfate system by capillary electrophoresis. J Surfactants Deterg 16(3):363–367

    Article  CAS  Google Scholar 

  66. Tedeschi AM, Busi E, Basosi R, Paduano L, D’Errico G (2006) Influence of the alkyl tail length on the anionic surfactant-PVP interaction. J Solution Chem 35(7):951–968

    Article  CAS  Google Scholar 

  67. Ghosh S, Moulik S (1999) Clouding behaviour of binary mixtures of triton X-100/Tween-80 as well as Tween-20/Brij-35, and the influences of the ionic surfactants (SDS and CTAB) and water soluble polymers (PVA and PVP) on their cloud points. Indian J Chem 38A:10–16

  68. Mudawadkar A, Sonawane G, Patil T (2013) Thermodynamics of micellization of nonionic surfactant Triton X-100 in presence of additive Poly-N-vinyl-pyrrolidone using clouding phenomenon. Orient J Chem 29(1):227

    Article  CAS  Google Scholar 

  69. Bali M, Masalci O (2020) Interactions of cationic surfactants with polyvinylpyrrolidone (PVP): Effects of counter ions and temperature. J Mol Liq 303:112576

    Article  CAS  Google Scholar 

  70. Nevin Ã, Erim FB (2013) Determination of Critical Aggregation Concentration in the Poly-(vinylpyrrolidone) â [euro]" Sodium Dodecyl Sulfate System by Capillary Electrophoresis. J Surfactants Deterg 16(3):363

    Article  CAS  Google Scholar 

  71. Majhi P, Moulik S, Burke SE, Rodgers M, Palepu R (2001) Physicochemical investigations on the interaction of surfactants and salts with polyvinylpyrrolidone in aqueous medium. J Colloid Interface Sci 235(2):227–234

    Article  CAS  PubMed  Google Scholar 

  72. Liu J, Zhao M, Zhang Q, Sun D, Wei X, Zheng L (2011) Interaction between two homologues of cationic surface active ionic liquids and the PEO-PPO-PEO triblock copolymers in aqueous solutions. Colloid Polym Sci 289(15):1711–1718

    Article  CAS  Google Scholar 

  73. Taboada P, Castro E, Mosquera V (2005) Surfactant/nonionic copolymer interaction: a SLS, DLS, ITC, and NMR investigation. J Phys Chem B 109(49):23760–23770

    Article  CAS  PubMed  Google Scholar 

  74. Ge L, Guo R, Zhang X (2008) Formation and microstructure transition of F127/TX-100 complex. J Phys Chem B 112(46):14566–14577

    Article  CAS  PubMed  Google Scholar 

  75. Bakshi MS, Kaur G, Kaura A (2005) Effect of hydrophobicity of zwitterionic surfactants and triblock polymers on their mixed micelles: a fluorescence study. Colloids Surf, A 269(1–3):72–79

    Article  CAS  Google Scholar 

  76. Kalam S, Kamal MS, Patil S, Hussain SMS (2020) Impact of Spacer Nature and Counter Ions on Rheological Behavior of Novel Polymer-Cationic Gemini Surfactant Systems at High Temperature. Polymers 12(5):1027

    Article  CAS  PubMed Central  Google Scholar 

  77. Jennings J, Green B, Mann TJ, Guymon CA, Mahanthappa MK (2018) Nanoporous polymer networks templated by gemini surfactant lyotropic liquid crystals. Chem Mater 30(1):185–196

    Article  CAS  Google Scholar 

  78. Yang J, Ding Y, Chen G, Li C (2007) Synthesis of conducting polyaniline using novel anionic Gemini surfactant as micellar stabilizer. Eur Polymer J 43(8):3337–3343

    Article  CAS  Google Scholar 

  79. Cashion MP, Li X, Geng Y, Hunley MT, Long TE (2010) Gemini surfactant electrospun membranes. Langmuir 26(2):678–683

    Article  CAS  PubMed  Google Scholar 

  80. Lü T, Luo C, Qi D, Zhang D, Zhao H (2019) Efficient treatment of emulsified oily wastewater by using amphipathic chitosan-based flocculant. React Funct Polym 139:133–141

    Article  CAS  Google Scholar 

  81. Antonietti M, Caruso RA, Göltner CG, Weissenberger MC (1999) Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases. Macromolecules 32(5):1383–1389

    Article  CAS  Google Scholar 

  82. Rahimpour A, Madaeni S, Mansourpanah Y (2007) The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration. J Membr Sci 296(1–2):110–121

    Article  CAS  Google Scholar 

  83. Fadilah NIM, Hassan AR (2016) Preparation, characterization and performance studies of active pvdf ultrafiltration-surfactants membranes containing PVP as additive. Malays J Anal Sci 20:335–341

    Article  Google Scholar 

  84. Md Fadilah NI, Hassan AR (2016) Preparation, Characterization and Performance Studies of Active PVDF Ultrafiltration-Surfactants Membranes Containing PVP as Additive. In: Advanced Materials Research. Trans Tech Publ, pp 44–49

  85. Omidvar M, Hejri Z, Moarefian A (2019) The effect of Merpol surfactant on the morphology and performance of PES/PVP membranes: Antibiotic separation. Int J Ind Chem 10(4):301–309

    Article  CAS  Google Scholar 

  86. Kamli M, Guettari M, Tajouri T (2019) Structure of polyvinylpyrrolidone aqueous solution in semi-dilute regime: Roles of polymer-surfactant complexation. J Mol Struct 1196:176–185

    Article  CAS  Google Scholar 

  87. Sivars U, Bergfeldt K, Piculell L, Tjerneld F (1996) Protein partitioning in weakly charged polymer-surfactant aqueous two-phase systems. J Chromatogr B Biomed Sci Appl 680(1–2):43–53

    Article  CAS  Google Scholar 

  88. Saitoh T, Hinze WL (1995) Use of surfactant-mediated phase separation (cloud point extraction) with affinity ligands for the extraction of hydrophilic proteins. Talanta 42(1):119–127

    Article  CAS  PubMed  Google Scholar 

  89. Saitoh T, Tani H, Kamidate T, Kamataki T, Watanabe H (1994) Polymer-induced phase separation in aqueous micellar solutions of alkylglucosides for protein extraction. Anal Sci 10(2):299–303

    Article  CAS  Google Scholar 

  90. Gu C, He J, Jia J, Fang N, Simmons R, Shamsi SA (2010) Surfactant-bound monolithic columns for separation of proteins in capillary high performance liquid chromatography. J Chromatogr A 1217(4):530–539

    Article  CAS  PubMed  Google Scholar 

  91. Pugnaloni LA, Dickinson E, Ettelaie R, Mackie AR, Wilde PJ (2004) Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv Coll Interface Sci 107(1):27–49

    Article  CAS  Google Scholar 

  92. Badal MY, Wong M, Chiem N, Salimi-Moosavi H, Harrison DJ (2002) Protein separation and surfactant control of electroosmotic flow in poly (dimethylsiloxane)-coated capillaries and microchips. J Chromatogr A 947(2):277–286

    Article  PubMed  Google Scholar 

  93. Persson J, Nyström L, Ageland H, Tjerneld F (1999) Purification of recombinant and human apolipoprotein A-1 using surfactant micelles in aqueous two-phase systems: Recycling of thermoseparating polymer and surfactant with temperature-induced phase separation. Biotechnol Bioeng 65(4):371–381

    Article  CAS  PubMed  Google Scholar 

  94. Root BE, Zhang B, Barron AE (2009) Size-based protein separations by microchip electrophoresis using an acid-labile surfactant as a replacement for SDS. Electrophoresis 30(12):2117–2122

    Article  CAS  PubMed  Google Scholar 

  95. Pantelidou M, Mackie AD (2019) In: Coarse-grained mean field simulations of a triblock copolymer system. The effect of flexibility on the micellization behavior. AIP Conference Proceedings, AIP Publishing LLC, p 200010

  96. Kang HS, Yang SR, Kim J-D, Han S-H, Chang I-S (2001) Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly (aspartic acid). Langmuir 17(24):7501–7506

    Article  CAS  Google Scholar 

  97. Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2003) Poly (acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part I: Nonionic surfactants. Int J Pharm 258(1–2):165–177

    Article  CAS  PubMed  Google Scholar 

  98. Gracia C, Gómez-Barreiro S, González-Pérez A, Nimo J, Rodrıguez J (2004) Static and dynamic light-scattering studies on micellar solutions of alkyldimethylbenzylammonium chlorides. J Colloid Interface Sci 276(2):408–413

    Article  CAS  PubMed  Google Scholar 

  99. Zhang J-T, Nie J, Ji G-Z, Jiang X-K (1994) Methodology for measuring the critical aggregate concentration of nonprobe molecules. Langmuir 10(8):2814–2816

    Article  CAS  Google Scholar 

  100. Li Z, Dormidontova EE (2010) Kinetics of diblock copolymer micellization by dissipative particle dynamics. Macromolecules 43(7):3521–3531

    Article  CAS  Google Scholar 

  101. Sanders SA, Panagiotopoulos AZ (2010) Micellization behavior of coarse grained surfactant models. J Chem Phys 132(11):114902

    Article  PubMed  CAS  Google Scholar 

  102. Vishnyakov A, Lee M-T, Neimark AV (2013) Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations. J Phys Chem Lett 4(5):797–802

  103. Aydin F, Chu X, Uppaladadium G, Devore D, Goyal R, Murthy NS, Zhang Z, Kohn J, Dutt M (2016) Self-assembly and critical aggregation concentration measurements of ABA triblock copolymers with varying B block types: model development, prediction, and validation. J Phys Chem B 120(15):3666–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosen M (1989) Surface and interfacial phenomena, 2nd edn. Wiely, New York, p 151

    Google Scholar 

  105. Strauss UP, Gershfeld NL (1954) The transition from typical polyelectrolyte to polysoap. I. Viscosity and solubilization studies on copolymers of 4-vinyl-N-ethylpyridinium bromide and 4-vinyl-Nn-dodecylpyridinium bromide. J Phys Chem Lett 58(9):747–753

  106. Yang YJ, Engberts JB (1991) Synthesis and catalytic properties of hydrophobically modified poly (alkylmethyldiallylammonium bromides). J Org Chem 56(13):4300–4304

    Article  CAS  Google Scholar 

  107. Kunitake T, Shinkai S, Hirotsu S (1977) Catalyses of polymer complexes. 4. Polysoap-catalyzed decarboxylation of 6-Nirtobenzisoxazole-3-carboxylate anion. Importance of the hydrophobic environment in activation of the anion. J Org Chem 42(2):306–312

  108. Wang G-J, Engberts JB (1995) Synthesis and catalytic properties of hydrophobically modified poly (alkylmethyl-diallylammonium chlorides). Eur Polym J 31(5):409–417

    Article  CAS  Google Scholar 

  109. Garcia MT, Kaczerewska O, Ribosa I, Brycki B, Materna P, Drgas M (2017) Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic gemini surfactants in aqueous solution. J Mol Liq 230:453–460

    Article  CAS  Google Scholar 

  110. Clendennen SK, Boaz NW (2019) Betaine amphoteric surfactants—Synthesis, properties, and applications. In: Biobased surfactants. Elsevier, pp 447–469

  111. Yarveicy H, Haghtalab A (2018) Effect of amphoteric surfactant on phase behavior of hydrocarbon-electrolyte-water system-an application in enhanced oil recovery. J Dispersion Sci Technol 39(4):522–530

    Article  CAS  Google Scholar 

  112. Fuseni A, Han M, Al-Mobith A (2013) In: Phase behavior and interfacial tension properties of an amphoteric surfactant for EOR application. SPE Saudi Arabia section technical symposium and exhibition, OnePetro

  113. Zhou J, Srivastava M, Hahn R, Inouye A, Dwarakanath V (2020) In Evaluation of an Amphoteric Surfactant for CO2 Foam Applications: A Comparative Study. SPE Improved Oil Recovery Conference, OnePetro

  114. Wang X, Sun S, Zhu X, Guo P, Liu X, Liu C, Lei M (2021) Application of amphoteric polymers in the process of leather post-tanning. J Leather Sci Eng 3(1):1–9

    Article  CAS  Google Scholar 

  115. Baek S, Shin D, Kim G, Lee A, Noh J, Choi B, Huh S, Jeong H, Sung Y (2021) Influence of amphoteric and anionic surfactants on stability, surface tension, and thermal conductivity of Al2O3/water nanofluids. Case Stud Therm Eng 25:100995

  116. Qiao Y, Zhang S, Lin O, Deng L, Dong A (2007) Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles. J Phys Chem B 111(38):11134–11139

    Article  CAS  PubMed  Google Scholar 

  117. Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109(1):120–124

    Article  CAS  PubMed  Google Scholar 

  118. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26(11):7783–7791

    Article  CAS  PubMed  Google Scholar 

  119. Afra S, Samouei H, Truong P, Nasr-El-Din H (2020) Micellar growth and network formation in acidic solutions of a sulfobetaine zwitterionic surfactant triggered by an inorganic salt. Soft Matter 16(18):4494–4501

    Article  CAS  PubMed  Google Scholar 

  120. Chu Z, Feng Y (2010) Amidosulfobetaine surfactant gels with shear banding transitions. Soft Matter 6(24):6065–6067

    Article  CAS  Google Scholar 

  121. Kamal MS (2016) A review of gemini surfactants: potential application in enhanced oil recovery. J Surfactants Deterg 19(2):223–236

    Article  CAS  Google Scholar 

  122. Pal N, Hoteit H, Mandal A (2021) Structural aspects, mechanisms and emerging prospects of Gemini surfactant-based alternative Enhanced Oil Recovery technology: A review. J Mol Liq 339:116811

    Article  CAS  Google Scholar 

  123. Yang C, Hu Z, Song Z, Bai J, Zhang Y, Luo J, Du Y, Jiang Q (2017) Self‐assembly properties of ultra‐long‐chain gemini surfactant with high performance in a fracturing fluid application. J Appl Polym Sci 134(11)

  124. Cheng C, Huang Z, Zhang R, Zhou J, Liu Z, Zhong H, Wang H, Kang Z, He G, Yu X (2020) Synthesis of an emerging morpholine-typed Gemini surfactant and its application in reverse flotation carnallite ore for production of potash fertilizer at low temperature. J Clean Prod 261:121121

    Article  CAS  Google Scholar 

  125. Chen L, Xie H, Li Y, Yu W (2008) Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids. Colloids Surf, A 330(2–3):176–179

    Article  CAS  Google Scholar 

  126. Siddiq AM, Parandhaman T, Begam AF, Das SK, Alam MS (2016) Effect of gemini surfactant (16-6-16) on the synthesis of silver nanoparticles: a facile approach for antibacterial application. Enzyme Microb Technol 95:118–127

    Article  CAS  PubMed  Google Scholar 

  127. Rajput SM, Kumar S, Aswal VK, El Seoud OA, Malek NI, Kailasa SK (2018) Drug-Induced Micelle-to-Vesicle Transition of a Cationic Gemini Surfactant: Potential Applications in Drug Delivery. ChemPhysChem 19(7):865–872

    Article  CAS  PubMed  Google Scholar 

  128. Ahmed T, Kamel AO, Wettig SD (2016) Interactions between DNA and Gemini surfactant: impact on gene therapy: part I. Nanomedicine 11(3):289–306

    Article  CAS  PubMed  Google Scholar 

  129. Li X, Wettig SD, Verrall RE (2004) Interactions between 12-EO x–12 gemini surfactants and Pluronic ABA block copolymers (F108 and P103) studied by isothermal titration calorimetry. Langmuir 20(3):579–586

    Article  CAS  PubMed  Google Scholar 

  130. Han Y, Wang Y (2011) Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys Chem Chem Phys 13(6):1939–1956

    Article  CAS  PubMed  Google Scholar 

  131. Lu T, Huang J, Li Z, Jia S, Fu H (2008) Effect of hydrotropic salt on the assembly transitions and rheological responses of cationic gemini surfactant solutions. J Phys Chem B 112(10):2909–2914

    Article  CAS  PubMed  Google Scholar 

  132. Lu T, Huang J (2007) Synthesis and properties of novel gemini surfactant with short spacer. Chin Sci Bull 52(19):2618–2620

    Article  CAS  Google Scholar 

  133. Bernheim-Groswasser A, Zana R, Talmon Y (2000) Sphere-to-cylinder transition in aqueous micellar solution of a dimeric (gemini) surfactant. J Phys Chem B 104(17):4005–4009

    Article  CAS  Google Scholar 

  134. Wang R, Tian M, Wang Y (2014) Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution. Soft Matter 10(11):1705–1713

    Article  CAS  PubMed  Google Scholar 

  135. Voisin D, Vincent B (2003) Flocculation in mixtures of cationic polyelectrolytes and anionic surfactants. Adv Coll Interface Sci 106(1–3):1–22

    Article  CAS  Google Scholar 

  136. Singh SK, Nilsson S (1999) Thermodynamics of interaction between some cellulose ethers and SDS by titration microcalorimetry: I. EHEC and HPMC. J Colloid Interface Sci 213(1):133–151

  137. Chronakis IS, Alexandridis P (2001) Rheological properties of oppositely charged polyelectrolyte− surfactant mixtures: effect of polymer molecular weight and surfactant architecture. Macromolecules 34(14):5005–5018

    Article  CAS  Google Scholar 

  138. Wang H, Wang Y (2010) Studies on interaction of poly (sodium acrylate) and poly (sodium styrenesulfonate) with cationic surfactants: effects of polyelectrolyte molar mass, chain flexibility, and surfactant architecture. J Phys Chem B 114(32):10409–10416

    Article  CAS  PubMed  Google Scholar 

  139. Bai G, Nichifor M, Lopes A, Bastos M (2005) Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length. J Phys Chem B 109(1):518–525

    Article  CAS  PubMed  Google Scholar 

  140. Sharma KP, Choudhury CK, Srivastava S, Davis H, Rajamohanan P, Roy S, Kumaraswamy G (2011) Assembly of polyethyleneimine in the hexagonal mesophase of nonionic surfactant: effect of pH and temperature. J Phys Chem B 115(29):9059–9069

    Article  CAS  PubMed  Google Scholar 

  141. Kjøniksen A-L, Nyström B, Lindman B (1999) Dynamic light scattering on semidilute aqueous systems of ethyl (hydroxyethyl) cellulose. Effects of temperature, surfactant concentration, and salinity. Colloids Surf A Physicochem Eng Asp 149(1–3):347–354

  142. Thalberg K, Lindman B, Karlstroem G (1991) Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: the effect of salt. J Phys Chem 95(15):6004–6011

    Article  CAS  Google Scholar 

  143. Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12(2):305–314

  144. Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 2. Effects of linear charge density. J Phys Chem 100(45):17873–17880

  145. Wallin T, Linse P (1997) Monte Carlo simulations of polyelectrolytes at charged micelles. 3. Effects of surfactant tail length. J Phys Chem B 101(28):5506–5513

  146. Sjöström J, Piculell L (2001) Interactions between cationically modified hydroxyethyl cellulose and oppositely charged surfactants studied by gel swelling experiments—effects of surfactant type, hydrophobic modification and added salt. Colloids Surf, A 183:429–448

    Article  Google Scholar 

  147. Maestro A, Rio E, Drenckhan W, Langevin D, Salonen A (2014) Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening. Soft Matter 10(36):6975–6983

    Article  CAS  PubMed  Google Scholar 

  148. Doroudian Rad M, Telmadarreie A, Xu L, Dong M, Bryant SL (2018) Insight on methane foam stability and texture via adsorption of surfactants on oppositely charged nanoparticles. Langmuir 34(47):14274–14285

    Article  CAS  PubMed  Google Scholar 

  149. Boakye-Ansah S, Khan MA, Haase MF (2020) Controlling surfactant adsorption on highly charged nanoparticles to stabilize bijels. J Phys Chem C 124(23):12417–12423

    Article  CAS  Google Scholar 

  150. Kaur R, Singh K, Khullar P, Gupta A, Ahluwalia GK, Bakshi MS (2019) Applications of Molecular Structural Aspects of Gemini Surfactants in Reducing Nanoparticle-Nanoparticle Interactions. Langmuir 35(46):14929–14938

    Article  CAS  PubMed  Google Scholar 

  151. Bali K, Dúzs B, Sáfrán GR, Pécz BL, Mészáros RB (2019) Effect of added surfactant on poly (Ethylenimine)-assisted gold nanoparticle formation. Langmuir 35(43):14007–14016

  152. Kogej K (2010) Association and structure formation in oppositely charged polyelectrolyte–surfactant mixtures. Adv Coll Interface Sci 158(1–2):68–83

    Article  CAS  Google Scholar 

  153. Schurtenberger P, Magid L, King S, Lindner P (1991) Cylindrical structure and flexibility of polymerlike lecithin reverse micelles. J Phys Chem 95(11):4173–4176

    Article  CAS  Google Scholar 

  154. Willard DM, Riter RE, Levinger NE (1998) Dynamics of polar solvation in lecithin/water/cyclohexane reverse micelles. J Am Chem Soc 120(17):4151–4160

    Article  CAS  Google Scholar 

  155. Palazzo G (2013) Wormlike reverse micelles. Soft Matter 9(45):10668–10677

    Article  CAS  Google Scholar 

  156. Terech P (1994) «Living polymers» in organic solvents: Bicopper (II) tetracarboxylate solutions. Il Nuovo Cimento D 16(7):757–764

    Article  Google Scholar 

  157. Gohy J-F (2005) Block copolymer micelles. In: Block copolymers II. Springer, pp 65–136

  158. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  PubMed  Google Scholar 

  159. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  160. Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16(2–3):295–309

    Article  CAS  Google Scholar 

  161. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27(15):4145–4159

    Article  CAS  Google Scholar 

  162. Booth C, Yu G, Nace V (2000) Block copolymers of ethylene oxide and 1, 2-butylene oxide. In: Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier, pp 57–86

  163. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27(9):2414–2425

    Article  CAS  Google Scholar 

  164. Gohy J-F, Lohmeijer BG, Schubert US (2002) Metallo-supramolecular block copolymer micelles. Macromolecules 35(12):4560–4563

    Article  CAS  Google Scholar 

  165. Gohy J-F, Lohmeijer BG, Varshney SK, Schubert US (2002) Covalent vs metallo-supramolecular block copolymer micelles. Macromolecules 35(19):7427–7435

    Article  CAS  Google Scholar 

  166. Saito R, Fujita A, Ichimura A, Ishizu K (2000) Synthesis of microspheres with microphase-separated shells. J Polym Sci, Part A: Polym Chem 38(11):2091–2097

    Article  CAS  Google Scholar 

  167. Erhardt R, Zhang M, Böker A, Zettl H, Abetz C, Frederik P, Krausch G, Abetz V, Müller AH (2003) Amphiphilic Janus micelles with polystyrene and poly (methacrylic acid) hemispheres. J Am Chem Soc 125(11):3260–3267

    Article  CAS  PubMed  Google Scholar 

  168. Raffa P, Broekhuis AA, Picchioni F (2016) Polymeric surfactants for enhanced oil recovery: A review. J Petrol Sci Eng 145:723–733

    Article  CAS  Google Scholar 

  169. Cabral H, Miyata K, Osada K, Kataoka K (2018) Block copolymer micelles in nanomedicine applications. Chem Rev 118(14):6844–6892

    Article  CAS  PubMed  Google Scholar 

  170. Otsuka H, Nagasaki Y, Kataoka K (2001) Self-assembly of poly (ethylene glycol)-based block copolymers for biomedical applications. Curr Opin Colloid Interface Sci 6(1):3–10

    Article  CAS  Google Scholar 

  171. Glass R, Möller M, Spatz JP (2003) Block copolymer micelle nanolithography. Nanotechnology 14(10):1153

    Article  CAS  Google Scholar 

  172. Lohmüller T, Aydin D, Schwieder M, Morhard C, Louban I, Pacholski C, Spatz JP (2011) Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6(1):MR1–MR12

  173. Bakshi MS, Sachar S, Yoshimura T, Esumi K (2004) Association behavior of poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) block copolymers with cationic surfactants in aqueous solution. J Colloid Interface Sci 278(1):224–233

    Article  CAS  PubMed  Google Scholar 

  174. Wang R, Tang Y, Wang Y (2014) Effects of cationic ammonium gemini surfactant on micellization of PEO–PPO–PEO triblock copolymers in aqueous solution. Langmuir 30(8):1957–1968

    Article  CAS  PubMed  Google Scholar 

  175. Castro E, Taboada P, Barbosa S, Mosquera V (2005) Size control of styrene oxide− ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study. Biomacromol 6(3):1438–1447

    Article  CAS  Google Scholar 

  176. Castro E, Taboada P, Mosquera V (2005) Behavior of a Styrene Oxide− Ethylene Oxide Diblock Copolymer/Surfactant System: A Thermodynamic and Spectroscopy Study. J Phys Chem B 109(12):5592–5599

    Article  CAS  PubMed  Google Scholar 

  177. Zheng Y, Davis H (2000) Mixed micelles of nonionic surfactants and uncharged block copolymers in aqueous solutions: microstructure seen by cryo-TEM. Langmuir 16(16):6453–6459

    Article  CAS  Google Scholar 

  178. Berret J-F, Herve P, Aguerre-Chariol O, Oberdisse J (2003) Colloidal complexes obtained from charged block copolymers and surfactants: A comparison between small-angle neutron scattering, Cryo-TEM, and simulations. J Phys Chem B 107(32):8111–8118

    Article  CAS  Google Scholar 

  179. Shibaev AV, Kuklin AI, Torocheshnikov VN, Orekhov AS, Roland S, Miquelard-Garnier G, Matsarskaia O, Iliopoulos I, Philippova OE (2022) Double dynamic hydrogels formed by wormlike surfactant micelles and cross-linked polymer. J Colloid Interface Sci 611:46–60

    Article  CAS  PubMed  Google Scholar 

  180. Lu S, Mei Q, Chen J, Wang Z, Li W, Feng C, Li X, Dong J (2022) Cryo-TEM and rheological study on shear-thickening wormlike micelles of zwitterionic/anionic (AHSB/SDS) surfactants. J Colloid Interface Sci 608:513–524

    Article  CAS  PubMed  Google Scholar 

  181. Kwiatkowski AL, Molchanov VS, Kuklin AI, Orekhov AS, Arkharova NA, Philippova OE (2022) Structural transformations of charged spherical surfactant micelles upon solubilization of water-insoluble polymer chains in salt-free aqueous solutions. J Mol Liq 347:118326

    Article  CAS  Google Scholar 

  182. Wang J, Fan Y, Wang H, Yin J, Tan W, Li X, Shen Y, Wang Y (2022) Promoting efficacy and environmental safety of photosensitive agrochemical stabilizer via lignin/surfactant coacervates. Chem Eng J 430:132920

    Article  CAS  Google Scholar 

  183. Uchman M, Štěpánek M, Prévost S, Angelov B, Bednár J, Appavou M-S, Gradzielski M, Procházka K (2012) Coassembly of poly (ethylene oxide)-block-poly (methacrylic acid) and N-dodecylpyridinium chloride in aqueous solutions leading to ordered micellar assemblies within copolymer aggregates. Macromolecules 45(16):6471–6480

    Article  CAS  Google Scholar 

  184. Chiappisi L, Hoffmann I, Gradzielski M (2013) Complexes of oppositely charged polyelectrolytes and surfactants–recent developments in the field of biologically derived polyelectrolytes. Soft Matter 9(15):3896–3909

    Article  CAS  Google Scholar 

  185. Mortensen K, Talmon Y (1995) Cryo-TEM and SANS microstructural study of pluronic polymer solutions. Macromolecules 28(26):8829–8834

    Article  CAS  Google Scholar 

  186. Shang BZ, Wang Z, Larson RG (2009) Effect of headgroup size, charge, and solvent structure on polymer− micelle interactions, studied by molecular dynamics simulations. J Phys Chem B 113(46):15170–15180

    Article  CAS  PubMed  Google Scholar 

  187. McCauley PJ, Kumar S, Calabrese MA (2021) Criteria Governing Rod Formation and Growth in Nonionic Polymer Micelles. Langmuir 37(40):11676–11687

    Article  CAS  PubMed  Google Scholar 

  188. White JM, Calabrese MA (2022) Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 128246

  189. Wu X, Ge W, Shao T, Wu W, Hou J, Cui L, Wang J, Zhang Z (2017) Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630. Int J Nanomed 12:1475

    Article  CAS  Google Scholar 

  190. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29(13):4350–4356

    Article  CAS  PubMed  Google Scholar 

  191. Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym Sci 268(2):101–117

    Article  CAS  Google Scholar 

  192. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728

    Article  CAS  PubMed  Google Scholar 

  193. Bodratti AM, Alexandridis P (2018) Formulation of poloxamers for drug delivery. J Funct Biomater 9(1):11

    Article  PubMed Central  CAS  Google Scholar 

  194. Brown W, Schillen K, Almgren M, Hvidt S, Bahadur P (1991) Micelle and gel formation in a poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) triblock copolymer in water solution: dynamic and static light scattering and oscillatory shear measurements. J Phys Chem 95(4):1850–1858

    Article  CAS  Google Scholar 

  195. Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26(4):805–812

    Article  CAS  Google Scholar 

  196. Linse P (1993) Phase behavior of poly (ethylene oxide)-poly (propylene oxide) block copolymers in aqueous solution. J Phys Chem 97(51):13896–13902

    Article  CAS  Google Scholar 

  197. Hamley IW, Pedersen JS, Booth C, Nace VM (2001) A small-angle neutron scattering study of spherical and wormlike micelles formed by poly (oxyethylene)-based diblock copolymers. Langmuir 17(20):6386–6388

    Article  CAS  Google Scholar 

  198. Pedersen JS, Gerstenberg MC (2003) The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering. Colloids Surf A 213(2–3):175–187

  199. Duval M, Waton G, Schosseler F (2005) Temperature-induced growth of wormlike copolymer micelles. Langmuir 21(11):4904–4911

    Article  CAS  PubMed  Google Scholar 

  200. Zhang K, Khan A (1995) Phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in water. Macromolecules 28(11):3807–3812

    Article  CAS  Google Scholar 

  201. Douglass BS, Colby RH, Madsen LA, Callaghan PT (2008) Rheo-NMR of wormlike micelles formed from nonionic pluronic surfactants. Macromolecules 41(3):804–814

    Article  CAS  Google Scholar 

  202. Ganguly R, Aswal V, Hassan P, Gopalakrishnan I, Yakhmi J (2005) Sodium chloride and ethanol induced sphere to rod transition of triblock copolymer micelles. J Phys Chem B 109(12):5653–5658

    Article  CAS  PubMed  Google Scholar 

  203. Kadam Y, Ganguly R, Kumbhakar M, Aswal V, Hassan P, Bahadur P (2009) Time dependent sphere-to-rod growth of the pluronic micelles: investigating the role of core and corona solvation in determining the micellar growth rate. J Phys Chem B 113(51):16296–16302

    Article  CAS  PubMed  Google Scholar 

  204. Jørgensen EB, Hvidt S, Brown W, Schillen K (1997) Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30(8):2355–2364

    Article  Google Scholar 

  205. Castelletto V, Parras P, Hamley I, Bäverbäck P, Pedersen JS, Panine P (2007) Wormlike micelle formation and flow alignment of a pluronic block copolymer in aqueous solution. Langmuir 23(13):6896–6902

    Article  CAS  PubMed  Google Scholar 

  206. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2: Mol Chem Phys 72:1525–1568

  207. Alexandridis P, Olsson U, Lindman B (1998) A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14(10):2627–2638

    Article  CAS  Google Scholar 

  208. Florin E, Kjellander R, Eriksson JC (1984) Salt effects on the cloud point of the poly (ethylene oxide)+ water system. J Chem Soc, Faraday Trans 1: Phys Chem Condensed Phases 80(11):2889–2910

  209. Mata J, Majhi P, Guo C, Liu H, Bahadur P (2005) Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J Colloid Interface Sci 292(2):548–556

    Article  CAS  PubMed  Google Scholar 

  210. Bahadur P, Pandya K, Almgren M, Li P, Stilbs P (1993) Effect of inorganic salts on the micellar behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution. Colloid Polym Sci 271(7):657–667

    Article  CAS  Google Scholar 

  211. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 13(23):6074–6082

    Article  CAS  Google Scholar 

  212. Ganguly R, Choudhury N, Aswal V, Hassan P (2009) Pluronic L64 micelles near cloud point: investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J Phys Chem B 113(3):668–675

    Article  CAS  PubMed  Google Scholar 

  213. Denkova A, Mendes E, Coppens M-O (2009) Rheology of worm-like micelles composed of tri-block copolymer in the limit of slow dynamics. J Rheol 53(5):1087–1100

    Article  CAS  Google Scholar 

  214. Denkova A, Mendes E, Coppens M-O (2008) Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. J Phys Chem B 112(3):793–801

    Article  CAS  PubMed  Google Scholar 

  215. Aswal V, Wagh A, Kammel M (2007) Formation of rodlike block copolymer micelles in aqueous salt solutions. J Phys: Condens Matter 19(11):116101

  216. Lakshmi SN, Bahadur P, Choudhury SD (2021) Fate of Photoinduced Electron Transfer Reactions with Temperature-and pH-Induced Assembly/Disassembly of Star Block Copolymer Micelles. Langmuir 37(48):14125–14134

    Article  CAS  PubMed  Google Scholar 

  217. Cho NH, Riley JK, Richards JJ (2021) Fast Dynamics of Inverse Wormlike Micelles Probed Using Mechanical and Dielectric Spectroscopy. J Phys Chem B 125(39):11067–11077

    Article  CAS  PubMed  Google Scholar 

  218. Zaldivar G, Conda-Sheridan M, Tagliazucchi M (2021) Molecular basis for the morphological transitions of surfactant wormlike micelles triggered by encapsulated nonpolar molecules. Langmuir 37(10):3093–3103

    Article  CAS  PubMed  Google Scholar 

  219. Shibaev A, Muravlev D, Skoi V, Rogachev A, Kuklin A, Filippova O (2021) Structure of Interpenetrating Networks of Xanthan Polysaccharide and Wormlike Surfactant Micelles. J Surf Invest 15(5):908–913

    Article  CAS  Google Scholar 

  220. Abbasi Moud A, Sanati-Nezhad A, Hejazi SH (2021) Confocal analysis of cellulose nanocrystal (CNC) based hydrogels and suspensions. Cellulose 28(16):10259–10276

    Article  CAS  Google Scholar 

  221. Cates M (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20(9):2289–2296

    Article  CAS  Google Scholar 

  222. Cates M, Candau S (1990) Statics and dynamics of worm-like surfactant micelles. J Phys: Condens Matter 2(33):6869

  223. Granek R, Cates M (1992) Stress relaxation in living polymers: Results from a Poisson renewal model. J Chem Phys 96(6):4758–4767

    Article  CAS  Google Scholar 

  224. Wyatt NB, Gunther CM, Liberatore MW (2011) Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer 52(11):2437–2444

    Article  CAS  Google Scholar 

  225. Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy J (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461

    Article  CAS  PubMed  Google Scholar 

  226. Cabane B, Duplessix R (1987) Decoration of semidilute polymer solutions with surfactant micelles. Journal de Physique 48(4):651–662

    Article  CAS  Google Scholar 

  227. Jiang W, Han S (2000) Viscosity of nonionic polymer/anionic surfactant complexes in water. J Colloid Interface Sci 229(1):1–5

    Article  CAS  PubMed  Google Scholar 

  228. Badoga S, Pattanayek SK, Kumar A, Pandey LM (2011) Effect of polymer–surfactant structure on its solution viscosity. Asia-Pac J Chem Eng 6(1):78–84

    Article  CAS  Google Scholar 

  229. Bu H, Kjøniksen A-L, Elgsaeter A, Nyström B (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: Calorimetric, rheological, and turbidity studies. Colloids Surf, A 278(1–3):166–174

    Article  CAS  Google Scholar 

  230. Galant C, Kjøniksen A-L, Knudsen KD, Helgesen G, Lund R, Laukkanen A, Tenhu H, Nyström B (2005) Physical properties of aqueous solutions of a thermo-responsive neutral copolymer and an anionic surfactant: turbidity and small-angle neutron scattering studies. Langmuir 21(17):8010–8018

    Article  CAS  PubMed  Google Scholar 

  231. Jia L, Qin X-H (2013) The effect of different surfactants on the electrospinning poly (vinyl alcohol)(PVA) nanofibers. J Therm Anal Calorim 112(2):595–605

    Article  CAS  Google Scholar 

  232. Suksamranchit S, Sirivat A (2007) Influence of ionic strength on complex formation between poly (ethylene oxide) and cationic surfactant and turbulent wall shear stress in aqueous solution. Chem Eng J 128(1):11–20

    Article  CAS  Google Scholar 

  233. Negm NA, Mohamed AS, Ahmed SM, El-Raouf MA (2015) Polymer-cationic surfactant interaction: 1. Surface and physicochemical properties of polyvinyl alcohol (PVA)-S-alkyl isothiouronium bromide surfactant mixed systems. J Surfactants Deterg 18(2):245–250

  234. Suksamranchit S, Sirivat A, Jamieson AM (2006) Polymer–surfactant complex formation and its effect on turbulent wall shear stress. J Colloid Interface Sci 294(1):212–221

    Article  CAS  PubMed  Google Scholar 

  235. Sastry NV, Singh DK (2016) Surfactant and gelation properties of acetylsalicylate based room temperature ionic liquid in aqueous media. Langmuir 32(39):10000–10016

    Article  CAS  PubMed  Google Scholar 

  236. Sardar N, Kamil M (2012) Interaction between nonionic polymer hydroxypropyl methyl cellulose (HPMC) and cationic gemini/conventional surfactants. Ind Eng Chem Res 51(3):1227–1235

    Article  CAS  Google Scholar 

  237. Kim J, Gao Y, Hebebrand C, Peirtsegaele E, Helgeson ME (2013) Polymer–surfactant complexation as a generic route to responsive viscoelastic nanoemulsions. Soft Matter 9(29):6897–6910

    Article  CAS  Google Scholar 

  238. Narváez CDM, Mazur T, Sharma V (2021) Dynamics and extensional rheology of polymer–surfactant association complexes. Soft Matter 17(25):6116–6126

    Article  Google Scholar 

  239. Wang S-C, Wei T-C, Chen W-B, Tsao H-K (2004) Effects of surfactant micelles on viscosity and conductivity of poly (ethylene glycol) solutions. J Chem Phys 120(10):4980–4988

    Article  CAS  PubMed  Google Scholar 

  240. Michel E, Filali M, Aznar R, Porte G, Appell J (2000) Percolation in a model transient network: Rheology and dynamic light scattering. Langmuir 16(23):8702–8711

    Article  CAS  Google Scholar 

  241. Nakaya-Yaegashi K, Ramos L, Tabuteau H, Ligoure C (2008) Linear viscoelasticity of entangled wormlike micelles bridged by telechelic polymers: An experimental model for a double transient network. J Rheol 52(2):359–377

    Article  CAS  Google Scholar 

  242. Ramos L, Ligoure C (2007) Structure of a new type of transient network: Entangled wormlike micelles bridged by telechelic polymers. Macromolecules 40(4):1248–1251

    Article  CAS  Google Scholar 

  243. Roland S, Miquelard-Garnier G, Shibaev AV, Aleshina AL, Chennevière A, Matsarskaia O, Sollogoub C, Philippova OE, Iliopoulos I (2021) Dual transient networks of polymer and micellar chains: Structure and viscoelastic synergy. Polymers 13(23):4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Penott-Chang EK, Gouveia L, Fernández IJ, Müller AJ, Díaz-Barrios A, Sáez AE (2007) Rheology of aqueous solutions of hydrophobically modified polyacrylamides and surfactants. Colloids Surf, A 295(1–3):99–106

    Article  CAS  Google Scholar 

  245. Morishima K, Sugawara S, Yoshimura T, Shibayama M (2017) Structure and rheology of wormlike micelles formed by fluorocarbon–hydrocarbon-type hybrid gemini surfactant in aqueous solution. Langmuir 33(24):6084–6091

    Article  CAS  PubMed  Google Scholar 

  246. Candau S, Hirsch E, Zana R (1985) Light scattering investigations of the behavior of semidilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semidilute polymer solutions. J Colloid Interface Sci 105(2):521–528

    Article  CAS  Google Scholar 

  247. Candau S, Khatory A, Lequeux F, Kern F (1993) Rheological behaviour of wormlike micelles: effect of salt content. Le Journal de Physique IV 3(C1):C1–197-C1–209

  248. Agrawal NR, Yue X, Feng Y, Raghavan SR (2019) Wormlike micelles of a cationic surfactant in polar organic solvents: extending surfactant self-assembly to new systems and subzero temperatures. Langmuir 35(39):12782–12791

    Article  CAS  PubMed  Google Scholar 

  249. Lin Z, Cai J, Scriven L, Davis H (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98(23):5984–5993

    Article  CAS  Google Scholar 

  250. Nodoushan EJ, Lee YJ, Na H-J, You B-H, Lee M-Y, Kim N (2021) Effects of NaCl and temperature on rheological characteristics and structures of CTAB/NaSal wormlike micellar solutions. J Ind Eng Chem 98:458–464

    Article  CAS  Google Scholar 

  251. Pahari S, Moon J, Akbulut M, Hwang S, Kwon JS-I (2021) Model predictive control for wormlike micelles (WLMs): Application to a system of CTAB and NaCl. Chem Eng Res Des 174:30–41

    Article  CAS  Google Scholar 

  252. Lv M, Wang G, Jiang J (2022) CO2/N2 and light dual-stimuli responsive wormlike micelles based on CTAB and conventional compounds. J Dispers Sci Technol 1–9

  253. David SL, Kumar S (1997) Kabir-ud-Din*, Viscosities of cetylpyridinium bromide solutions (aqueous and aqueous KBr) in the presence of alcohols and amines. J Chem Eng Data 42(1):198–201

    Article  CAS  Google Scholar 

  254. Mukhim T, Dey J, Das S, Ismail K (2010) Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J Colloid Interface Sci 350(2):511–515

    Article  CAS  PubMed  Google Scholar 

  255. Shikata T, Hirata H, Takatori E, Osaki K (1988) Nonlinear viscoelastic behavior of aqueous detergent solutions. J Nonnewton Fluid Mech 28(2):171–182

    Article  CAS  Google Scholar 

  256. Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17(2):300–306

    Article  CAS  Google Scholar 

  257. Zhang Y, Feng Y (2015) CO2-induced smart viscoelastic fluids based on mixtures of sodium erucate and triethylamine. J Colloid Interface Sci 447:173–181

    Article  CAS  PubMed  Google Scholar 

  258. Yang Z, He S, Fang Y, Zhang Y (2021) Viscoelastic Fluid Formed by Ultralong-Chain Erucic Acid-Base Ionic Liquid Surfactant Responds to Acid/Alkaline, CO2, and Light. J Agric Food Chem 69(10):3094–3102

    Article  CAS  PubMed  Google Scholar 

  259. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23(26):12849–12856

    Article  CAS  PubMed  Google Scholar 

  260. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3(8):956–970

    Article  CAS  PubMed  Google Scholar 

  261. Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4(2):354–359

  262. Shikata T, Hirata H, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3(6):1081–1086

    Article  CAS  Google Scholar 

  263. Richtering W (2001) Rheology and shear induced structures in surfactant solutions. Curr Opin Colloid Interface Sci 6(5–6):446–450

    Article  CAS  Google Scholar 

  264. Berret J-F, Gamez-Corrales R, Séréro Y, Molino F, Lindner P (2001) Shear-induced micellar growth in dilute surfactant solutions. EPL (Europhysics Letters) 54(5):605

    Article  CAS  Google Scholar 

  265. Sharma H, Dormidontova EE (2019) Polymer-threaded and polymer-wrapped wormlike micelle solutions: Molecular dynamics simulations. Macromolecules 52(18):7016–7027

    Article  CAS  Google Scholar 

  266. Wang Z-L, Li Z-Q, Zhang L, Huang H-Y, Zhang L, Zhao S, Yu J-Y (2011) Dilational Properties of Sodium 2, 5-Dialkyl Benzene Sulfonates at Air− Water and Decane− Water Interfaces. J Chem Eng Data 56(5):2393–2398

    Article  CAS  Google Scholar 

  267. Anseth JW, Bialek A, Hill RM, Fuller GG (2003) Interfacial rheology of graft-type polymeric siloxane surfactants. Langmuir 19(16):6349–6356

    Article  CAS  Google Scholar 

  268. Golemanov K, Denkov N, Tcholakova S, Vethamuthu M, Lips A (2008) Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24(18):9956–9961

    Article  CAS  PubMed  Google Scholar 

  269. Mitrinova Z, Tcholakova S, Denkov N (2016) Ananthapadmanabhan, K., Role of interactions between cationic polymers and surfactants for foam properties. Colloids Surf, A 489:378–391

  270. Mitrinova Z, Tcholakova S, Golemanov K, Denkov N, Vethamuthu M (2013) Ananthapadmanabhan, K., Surface and foam properties of SLES+ CAPB+ fatty acid mixtures: Effect of pH for C12–C16 acids. Colloids Surf, A 438:186–198

  271. Fainerman VB, Kovalchuk VI, Aksenenko EV, Zinkovych II, Makievski AV, Nikolenko MV, Miller R (2018) Dilational viscoelasticity of proteins solutions in dynamic conditions. Langmuir 34(23):6678–6686

    Article  CAS  PubMed  Google Scholar 

  272. Bae J-E, Jung JB, Kim K, Lee S-M, Kang N-G (2019) A study on time-concentration superposition of dilatational modulus and foaming behavior of sodium alkyl sulfate. J Colloid Interface Sci 556:704–716

    Article  CAS  PubMed  Google Scholar 

  273. Honerkamp J, Weese J (1993) A note on estimating mastercurves. Rheol Acta 32(1):57–64

    Article  CAS  Google Scholar 

  274. Bae J-E, Cho KS, Seo KH, Kang D-G (2011) Application of geometric algorithm of time-temperature superposition to linear viscoelasticity of rubber compounds. Korea Aust Rheol J 23(2):81–87

    Article  Google Scholar 

  275. Monteux C, Williams C, Meunier J, Anthony O, Bergeron V (2004) Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels. Langmuir 20(1):57–63

    Article  CAS  PubMed  Google Scholar 

  276. Taylor D, Thomas R, Penfold J (2007) Polymer/surfactant interactions at the air/water interface. Adv Coll Interface Sci 132(2):69–110

    Article  CAS  Google Scholar 

  277. Noskov B, Loglio G, Miller R (2004) Dilational viscoelasticity of polyelectolyte/surfactant adsorption films at the air/water interface: dodecyltrimethylammonium bromide and sodium poly (styrenesulfonate). J Phys Chem B 108(48):18615–18622

    Article  CAS  Google Scholar 

  278. Bykov A, Liggieri L, Noskov B, Pandolfini P, Ravera F, Loglio G (2015) Surface dilational rheological properties in the nonlinear domain. Adv Coll Interface Sci 222:110–118

    Article  CAS  Google Scholar 

  279. Bykov AG, Lin S-Y, Loglio G, Miller R, Noskov BA (2009) Kinetics of adsorption layer formation in solutions of polyacid/surfactant complexes. J Phys Chem C 113(14):5664–5671

    Article  CAS  Google Scholar 

  280. Noskov B, Loglio G, Lin S-Y, Miller R (2006) Dynamic surface elasticity of polyelectrolyte/surfactant adsorption films at the air/water interface: Dodecyltrimethylammonium bromide and copolymer of sodium 2-acrylamido-2-methyl-1-propansulfonate with N-isopropylacrylamide. J Colloid Interface Sci 301(2):386–394

    Article  CAS  PubMed  Google Scholar 

  281. Nobre TM, Wong K, Zaniquelli MED (2007) Equilibrium and dynamic aspects of dodecyltrimethylammonium bromide adsorption at the air/water interface in the presence of λ-carrageenan. J Colloid Interface Sci 305(1):142–149

    Article  CAS  PubMed  Google Scholar 

  282. Ropers M-H, Novales B, Boué F, Axelos MA (2008) Polysaccharide/Surfactant Complexes at the Air− Water Interface− Effect of the Charge Density on Interfacial and Foaming Behaviors. Langmuir 24(22):12849–12857

    Article  CAS  PubMed  Google Scholar 

  283. Chauhan S, Singh R, Sharma K (2016) Volumetric, compressibility, surface tension and viscometric studies of CTAB in aqueous solutions of polymers (PEG and PVP) at different temperatures. J Chem Thermodyn 103:381–394

    Article  CAS  Google Scholar 

  284. Regismond S, Gracie K, Winnik F, Goddard E (1997) Polymer/surfactant complexes at the air/water interface detected by a simple measure of surface viscoelasticity. Langmuir 13(21):5558–5562

    Article  CAS  Google Scholar 

  285. Regismond S, Winnik F, Goddard E (1996) Surface viscoelasticity in mixed polycation anionic surfactant systems studied by a simple test. Colloids Surf, A 119(2–3):221–228

    Article  CAS  Google Scholar 

  286. Monteux C, Fuller GG, Bergeron V (2004) Shear and dilational surface rheology of oppositely charged polyelectrolyte/surfactant microgels adsorbed at the air− water interface. Influence on foam stability. J Phys Chem B 108(42):16473–16482

  287. Ritacco H, Kurlat D, Langevin D (2003) Properties of aqueous solutions of polyelectrolytes and surfactants of opposite charge: surface tension, surface rheology, and electrical birefringence studies. J Phys Chem B 107(34):9146–9158

    Article  CAS  Google Scholar 

  288. Bhattacharyya A, Monroy F, Langevin D, Argillier J-F (2000) Surface rheology and foam stability of mixed surfactant− polyelectrolyte solutions. Langmuir 16(23):8727–8732

    Article  CAS  Google Scholar 

  289. Wüstneck R, Hermel H, Kretzschmar G (1984) Beeinflussung der Oberflächeneigenschaften des Systems Gelatine+ Tensid durch die Art der Gelatine. Colloid Polym Sci 262(10):827–832

    Article  Google Scholar 

  290. Zastrow L, Wüstneck R, Kretzschmar G (1985) Characterization of the interaction between gelatin and a spread monolayer of octadecanoic acid. Colloid Polym Sci 263(9):749–755

    Article  CAS  Google Scholar 

  291. Rao A, Kim J, Thomas RR (2005) Interfacial rheological studies of gelatin− sodium dodecyl sulfate complexes adsorbed at the air− water interface. Langmuir 21(2):617–621

    Article  CAS  PubMed  Google Scholar 

  292. Hempt C, Lunkenheimer K, Miller R (1985) On the experimental determination of the dilational elasticity and the exchange of matter of mixed gelatin surfactant adsorption layers. Z Phys Chem 266(1):713–720

    Article  CAS  Google Scholar 

  293. Keshavarzi B, Javadi A, Bahramian A, Miller R (2018) Thixotropic bulk elasticity versus interfacial elasticity in xanthan gum surfactant mixed solutions. Colloids Surf, A 557:123–130

    Article  CAS  Google Scholar 

  294. Rütering M, Schmid J, Gansbiller M, Braun A, Kleinen J, Schilling M, Sieber V (2018) Rheological characterization of the exopolysaccharide Paenan in surfactant systems. Carbohyd Polym 181:719–726

    Article  CAS  Google Scholar 

  295. Del Sorbo GR, Prévost S, Schneck E, Gradzielski M, Hoffmann I (2020) On the mechanism of shear-thinning in viscous oppositely charged polyelectrolyte surfactant complexes (PESCs). J Phys Chem B 124(5):909–913

    Article  PubMed  CAS  Google Scholar 

  296. Greener J, Contestable B, Bale M (1987) Interaction of anionic surfactants with gelatin: viscosity effects. Macromolecules 20(10):2490–2498

    Article  CAS  Google Scholar 

  297. Zhang W, Du Z, Chang C-H, Wang G (2009) Preparation and properties of comb-like surfactants containing poly (ethylene oxide) methyl ether grafts. J Colloid Interface Sci 337(2):563–568

    Article  CAS  PubMed  Google Scholar 

  298. Ding J, Tracey PJ, Li W, Peng G, Whitten PG, Wallace GG (2013) Review on shear thickening fluids and applications. Textiles and Light Industrial Science and Technology (TLIST) 2(4):161–173

  299. KHIN CC (2004) Microstructure and rheology of polymer-surfactant solutions

  300. Walker LM (2001) Rheology and structure of worm-like micelles. Curr Opin Colloid Interface Sci 6(5–6):451–456

    Article  CAS  Google Scholar 

  301. Berret JF, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9(11):2851–2854

    Article  CAS  Google Scholar 

  302. Yang J (2002) Viscoelastic wormlike micelles and their applications. Curr Opin Colloid Interface Sci 7(5–6):276–281

    Article  CAS  Google Scholar 

  303. Ji Y, Kang W, Liu S, Yang R, Fan H (2015) The relationships between rheological rules and cohesive energy of amphiphilic polymers with different hydrophobic groups. J Polym Res 22(3):1–7

    Article  CAS  Google Scholar 

  304. Masrat R, Shah RA, Lone MS, Ashraf U, Afzal S, Rather GM, Dar AA (2020) Comparison between the interfacial and bulk rheology of sodium carboxymethylcellulose in the presence of cationic and non-ionic surfactants. J Mol Liq 301:112477

    Article  CAS  Google Scholar 

  305. Goddard ED, Ananthapadmanabhan K (2020) Applications of polymer-surfactant systems. In: Polymer-surfactant systems. CRC Press, pp 21–64

Download references

Funding

The author received no financial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Abbasi Moud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Moud, A. Rheology and microscopy analysis of polymer–surfactant complexes. Colloid Polym Sci 300, 733–762 (2022). https://doi.org/10.1007/s00396-022-04982-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04982-2

Keywords

Navigation