Skip to main content
Log in

Emulsion polymerization using three types of RAFT prepared well-defined cationic polymeric stabilizers based on 2-dimethylaminoethyl methacrylate (DMAEMA): a comparative study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Three types of well-defined stabilizers, based on 2-dimethylaminoethyl methacrylate (DMAEMA), including poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), poly(2-dimethylaminoethyl methacrylate)-block-poly(methyl methacrylate) (PDMAEMA-b-PMMA), and PDMAEMA-co-PMMA, were synthesized through reversible addition-fragmentation chain transfer (RAFT) solution polymerization and used as well-defined cationic stabilizers in emulsion (co)polymerization of styrene and/or methyl methacrylate (MMA). Because of different characteristics of MMA and styrene, using varying ratios of these monomer as well as using different structures of stabilizers allowed us to better understanding of stabilizers’ behavior during polymerization course. The results showed that PDMAEMA-b-PMMA was more robust against changes in monomer composition, meaning less fluctuations in particle size distribution and kinetics plots. Also, more than 85% monomer conversion was reached and the resulting polymer particles, ranging in diameter from 75 to ~135 nm. Using PDMAEMA-b-PMMA and adding only 5 mol% MMA as a comonomer in emulsion polymerization of styrene resulted in producing highly uniform particles with size polydispersity of (0.04), as confirmed by TEM and DLS. This narrow size polydispersity was attributed to generation of more positively charged amphiphilic oligomers at early stages of polymerization and thus, faster nucleation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable

Code availability

Not applicable

References

  1. El-Aasser MS, Sudol ED (1997) Emulsion polymerization and emulsion polymers. Wiley

  2. Warson H (1996) Emulsion polymerization, a mechanistic approach. R. G. Gilbert. Academic Press, London, 1995. Polym Int 41:352. https://doi.org/10.1002/pi.1996.210410321

  3. Cunningham M (2008) Cunningham, M. F. Controlled/living radical polymerization in aqueous dispersed systems. Prog. Polym. Sci. 33, 365-398. Prog Polym Sci 33:365–398. https://doi.org/10.1016/j.progpolymsci.2007.11.002

  4. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, p 850

  5. Ho J, Mudraboyina B, Spence-Elder C, Resendes R, Cunningham MF, Jessop PG (2018) Water-borne coatings that share the mechanism of action of oil-based coatings. Green Chem 20:1899–1905. https://doi.org/10.1039/C8GC00130H

    Article  CAS  Google Scholar 

  6. Zhang Y, Cunningham MF, Dubé MA (2020) Modification of adhesive and latex properties for starch nanoparticle-based pressure sensitive adhesives. Macromol React Eng 14:1900023. https://doi.org/10.1002/mren.201900023

    Article  CAS  Google Scholar 

  7. Zhao CL, Holl Y, Pith T, Lambla M (1987) FTIR-ATR spectroscopic determination of the distribution of surfactants in latex films. Colloid Polym Sci 265:823–829. https://doi.org/10.1007/BF01418459

    Article  CAS  Google Scholar 

  8. Roulstone BJ, Wilkinson MC, Hearn J (1992) Studies on polymer latex films: II. Effect of surfactants on the water vapour permeability of polymer latex films. Polym Int 27:43–50. https://doi.org/10.1002/pi.4990270107

    Article  CAS  Google Scholar 

  9. Halperin A (1987) Polymeric micelles: a star model. Macromolecules 20:2943–2946. https://doi.org/10.1021/ma00177a051

    Article  CAS  Google Scholar 

  10. Matyjaszewski K (2009) Controlled/living radical polymerization: progress in RAFT, DT, NMP & OMRP. American Chemical Society

  11. Becher P (1993) A review of: “polymeric surfactants”, I. Piirma. Marcel Dekker, Inc. J Dispers Sci Technol 14:129–130. https://doi.org/10.1080/01932699308943391

    Article  Google Scholar 

  12. Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric surfactants: synthesis, properties, and links to applications. Chem Rev 115:8504–8563. https://doi.org/10.1021/cr500129h

    Article  CAS  PubMed  Google Scholar 

  13. dos Santos AM, Pohn J, Lansalot M, D’Agosto F (2007) Combining steric and electrostatic stabilization using hydrophilic macroRAFT agents in an ab initio emulsion polymerization of styrene. Macromol Rapid Commun 28:1325–1332. https://doi.org/10.1002/marc.200700146

    Article  CAS  Google Scholar 

  14. Manguian M, Save M, Charleux B (2006) Batch emulsion polymerization of styrene stabilized by a hydrophilic macro-RAFT agent. Macromol Rapid Commun 27:399–404. https://doi.org/10.1002/marc.200500807

    Article  CAS  Google Scholar 

  15. Ni P, Zhang M, Ma L, Fu S (2006) Poly(dimethylamino)ethyl methacrylate for use as a surfactant in the miniemulsion polymerization of styrene. Langmuir 22:6016–6023. https://doi.org/10.1021/la053276z

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Sudol ED, El-Aasser MS (2001) Emulsion polymerization of styrene using a reactive surfactant and its polymeric counterpart: kinetic studies. Macromolecules 34:7715–7723. https://doi.org/10.1021/ma0107298

    Article  CAS  Google Scholar 

  17. Cochin D, Laschewsky A, Nallet F (1997) Emulsion polymerization of styrene using conventional, polymerizable, and polymeric surfactants. A Comparative Study. Macromolecules 30:2278–2287. https://doi.org/10.1021/ma9614510

    Article  CAS  Google Scholar 

  18. Tauer K, Zimmermann A, Schlaad H (2002) New reactive block copolymers as stabilizers in emulsion polymerization. Macromol Chem Phys 203:319–327

    Article  CAS  Google Scholar 

  19. Tadros TF (2017) Polymeric surfactants. De Gruyter, Berlin, Boston

    Book  Google Scholar 

  20. Ayoub MMH, Nasr HE, Rozik NN (1998) Amphiphatic copolymer as surfactant for emulsion polymerization of styrene. J Macromol Sci Part A 35:1415–1432. https://doi.org/10.1080/10601329808002129

    Article  Google Scholar 

  21. Shieh Y-T, Yeh Y-C, Cheng C-C (2020) Two-way CO2-responsive polymer particles with controllable amphiphilic properties. ACS Omega 5:1862–1869. https://doi.org/10.1021/acsomega.9b03319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiefari J, Chong YK(B), Ercole F et al (1998) Living free-radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  23. Lowe AB, McCormick CL (2007) Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351. https://doi.org/10.1016/j.progpolymsci.2006.11.003

    Article  CAS  Google Scholar 

  24. McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325. https://doi.org/10.1021/ar0302484

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Yu G, Wang W-J, Yuan H, Li BG, Zhu S (2013) Switchable block copolymer surfactants for preparation of reversibly coagulatable and redispersible poly(methyl methacrylate) latexes. Macromolecules 46:1261–1267

    Article  CAS  Google Scholar 

  26. Shirin-abadi AR, Darabi A, Jessop PG et al (2016) Tuning the aggregation and redispersion behavior of CO2-switchable latexes by a combination of DMAEMA and PDMAEMA-b-PMMA as stabilizing moieties. Polymer (Guildf) 106:303–312

    Article  Google Scholar 

  27. Xiao G, Hu Z, Zeng G, Wang Y, Huang Y, Hong X, Xia B, Zhang G (2012) Effect of hydrophilic chain length on the aqueous solution behavior of block amphiphilic copolymers PMMA-b-PDMAEMA. J Appl Polym Sci 124:202–208. https://doi.org/10.1002/app.33734

    Article  CAS  Google Scholar 

  28. Tebaldi ML, Leal DA, Montoro SR, Petzhold C (2014) Synthesis of stimuli-sensitive copolymers by RAFT polymerization: potential candidates as drug delivery systems. Mater Res 17:191–196

    Article  Google Scholar 

  29. Leemans L, Fayt R, Teyssie P, De Jaeger NC (1991) Poly(alkyl methacrylate-b-sulfonated glycidyl methacrylate). A new amphiphilic polymeric surfactant for the preparation and stabilization of polymer acrylic latices in aqueous medium. Macromolecules 24:5922–5925. https://doi.org/10.1021/ma00022a005

    Article  CAS  Google Scholar 

  30. Tadros TF, Vincent B (1980) Influence of temperature and electrolytes on the adsorption of poly(ethylene oxide)-poly(propylene oxide) block copolymer on polystyrene latex and on the stability of the polymer-coated particles. J Phys Chem 84:1575–1580. https://doi.org/10.1021/j100449a028

    Article  CAS  Google Scholar 

  31. Porter MR (1991) Polymeric surfactants BT - handbook of surfactants. In: Porter MR (ed). Springer US, Boston, pp 209–211

    Google Scholar 

  32. Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Kajiwara A, Klumperman B, Russell GT (2000) Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. Macromol Chem Phys 201:1355–1364

    Article  CAS  Google Scholar 

  33. Shirin-Abadi AR, Darabi A, Jessop PG, Cunningham MF (2015) Preparation of redispersible polymer latexes using cationic stabilizers based on 2-dimethylaminoethyl methacrylate hydrochloride and 2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride. Polymer (Guildf) 60:1–8

    Article  CAS  Google Scholar 

  34. Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that Can Be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670

    Article  CAS  Google Scholar 

  35. Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B (2011) One-Pot synthesis of poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate)-b-polystyrene amphiphilic block copolymers and their self-assemblies in water via RAFT-mediated radical emulsion polymerization. A kinetic study. Macromolecules 44:7584–7593. https://doi.org/10.1021/ma201515n

    Article  CAS  Google Scholar 

  36. Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B (2012) Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated One-Pot aqueous emulsion polymerization. Macromolecules 45:4075–4084. https://doi.org/10.1021/ma300596f

    Article  CAS  Google Scholar 

  37. Pei Y, Lowe AB, Roth PJ (2017) Stimulus-responsive nanoparticles and associated (reversible) polymorphism via polymerization induced self-assembly (PISA). Macromol Rapid Commun 38:1600528. https://doi.org/10.1002/marc.201600528

    Article  CAS  Google Scholar 

  38. Penfold NJW, Yeow J, Boyer C, Armes SP (2019) Emerging trends in polymerization-induced self-assembly. ACS Macro Lett 8:1029–1054. https://doi.org/10.1021/acsmacrolett.9b00464

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Abbas Rezaee Shirin-Abadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanpour, M., Rezaee Shirin-Abadi, A. Emulsion polymerization using three types of RAFT prepared well-defined cationic polymeric stabilizers based on 2-dimethylaminoethyl methacrylate (DMAEMA): a comparative study. Colloid Polym Sci 299, 1189–1198 (2021). https://doi.org/10.1007/s00396-021-04836-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04836-3

Keywords

Navigation