Skip to main content
Log in

Preparation of monodisperse polystyrene microspheres with different functional groups using soap-free emulsion polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Monodisperse polystyrene microspheres with different functional groups have important applications in both the medical and analytical fields. In this study, we prepared monodisperse microspheres with sulfonic acid or carboxyl groups using soap-free emulsion polymerization (SFEP) with potassium persulfate as the initiator. A series of monodisperse polystyrene microspheres with sizes between 100 and 500 nm were successfully prepared by copolymerizing different types of ionic monomers at different concentrations. The microspheres were characterized by using dynamic light scattering (DLS), Zeta potential measurements (ZP), FT-IR spectroscopy, and transmission electron microscopy (TEM). The mechanism of the particle nucleation and growth were studied by combining the changes in particle size and the number of particles. The results showed that the addition of hydrophilic comonomers like sodium p-styrene sulfonate, acrylic acid, and methacrylic acid significantly improved the stability of the polystyrene microspheres and promoted particle nucleation, resulting in less particle aggregation and microspheres with smaller sizes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prasath RA, Margarit-Puri K, Klapper M (2007) Emulsifier-free emulsion polymerization of styrene with 4-vinylbenzoic acid: kinetics and distribution of the carboxyl groups. Appl Polym Sci 103:2910–2919. https://doi.org/10.1002/app.25066

    Article  CAS  Google Scholar 

  2. Liu B, Bai Y, Sun C, Chen M, Cao Z, Du S, Xu L, Zhang M (2019) Synthesis of monodisperse, re-dispersable polymer particles by one-step high solid emulsion polymerization in the presence of reactive surfactant. J Dispers Sci Technol 2019:1–9. https://doi.org/10.1080/01932691.2018.1505527

    Article  CAS  Google Scholar 

  3. Yaamoto T, Furuta R, Kawai Y (2019) Effect of initiator charge on dispersion stability of polymer particles formed by soap-free emulsion polymerization of 4-vinylaniline or 4-vinylpyridine. Chem Lett 48:208–210. https://doi.org/10.1246/cl.180917

    Article  CAS  Google Scholar 

  4. Liu B, Meng W, Wang P, Zhang M, Zhang H (2016) In situ charge neutralization-controlled particle coagulation and its effects on the particle size distribution in the one-step emulsion polymerization. Eur Polym J 83:278–287. https://doi.org/10.1016/j.eurpolymj.2016.08.027

    Article  CAS  Google Scholar 

  5. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J. Contr Release 70:1–20. https://doi.org/10.1016/S0168-3659(00)00340-0

    Article  CAS  Google Scholar 

  6. Yang W, Yan S, Wei C, Wang Q (2010) Preparation of melamine molecularly imprinted polymer microspheres by precipitation polymerization. Acta Polym Sin 10:1163–1169. https://doi.org/10.3724/SP.J.1105.2010.09347

    Article  Google Scholar 

  7. Li L, He X, Chen L, Zhang Y (2019) Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin. Chem Asian J 4:286–293. https://doi.org/10.1002/asia.200800300

    Article  CAS  Google Scholar 

  8. Zhang S, Chen J, Taha M (2009) Synthesis of monodisperse styrene/methyl methacrylate/acrylic acid latex using surfactant-free emulsion copolymerization in air. J Appl Polym Sci 114:1598–1605. https://doi.org/10.1002/app.30744

    Article  CAS  Google Scholar 

  9. Bai F, Yang X, Li R, Huang B, Huang W (2006) Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47:5775–5784. https://doi.org/10.1016/j.polymer.2006.06.014

    Article  CAS  Google Scholar 

  10. Ceska G (1974) The effect of carboxylic monomers on surfactant-free emulsion copolymerization. J Appl Polym Sci 18:427–437. https://doi.org/10.1002/app.1974.070180210

    Article  CAS  Google Scholar 

  11. Yan C, Cheng S, Feng L (1999) Kinetics and mechanism of emulsifier-free emulsion copolymerization: styrene-methyl methacrylate-acrylic acid system. J Polym Sci Part A: Polym Chem 37:2649–2656. https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2649::AID-POLA40>3.0.CO;2-L

    Article  CAS  Google Scholar 

  12. Abdollahi M (2007) Effect of carboxylic acid monomer type on particle nucleation and growth in emulsifier-free emulsion copolymerization of styrene-carboxylic acid monomer. Polym J 39:802–812. https://doi.org/10.1295/polymj.PJ2006246

    Article  CAS  Google Scholar 

  13. Wang H, Liu B, Zhang M, Du S, Wu G, Hu Y, Liu X (2020) Narrow-disperse, cross-linked polymer microspheres by one-step dispersion polymerization with a chain transfer agent. Polym Adv Technol 31:407–414. https://doi.org/10.1002/pat.4776

    Article  CAS  Google Scholar 

  14. Wang P, Pan C (2001) Emulsion copolymerization of styrene with acrylic or methacrylic acids- distribution of the carboxylic group. Colloid Polym Sci 279:98–103. https://doi.org/10.1007/s003960000407

    Article  CAS  Google Scholar 

  15. Wen F, Zhang W, Zheng P, Zheng X, Yang X, Wang Y, Jang X, Wei G, Shi L (2008) One-stage synthesis of narrowly dispersed polymeric core-shell microspheres. J Polym Sci Part A: Polym Chem 46:1192–1202. https://doi.org/10.1002/pola.22460

    Article  CAS  Google Scholar 

  16. Deng W, Li R, Zhang M, Gong L, Kan C (2010) Influences of MAA on the porous morphology of P(St-MAA) latex particles produced by batch soap-free emulsion polymerization followed by stepwise alkali/acid post-treatment. J Colloid Interface Sci 349:122–126. https://doi.org/10.1016/j.jcis.2010.05.033

    Article  CAS  PubMed  Google Scholar 

  17. Meincke T, Jordan M, Vogel N, Robin N (2018) On the size-determining role of the comonomer in the nucleation and growth of cationic polystyrene latex via emulsion polymerization. Macromol Chem Phys 219:1–7. https://doi.org/10.1002/macp.201700457

    Article  CAS  Google Scholar 

  18. Liu Z, Xiao H, Wiseman N (2000) Emulsifier-free emulsion copolymerization of styrene with quaternary ammonium cationic monomers. J Appl Polym Sci 76:1129–1140. https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1129::AID-APP17>3.0.CO;2-O

    Article  CAS  Google Scholar 

  19. Zhang J, Zhao X, Wang Y, Zhu L, Yang L, Li G, Sha S (2017) Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials 7:1–7. https://doi.org/10.3390/nano7010009

    Article  CAS  Google Scholar 

  20. De La Rosa L, Sudol E, El-Aasser M, Klein A (1999) Emulsion polymerization of styrene using reaction calorimeter. I. Above and below critical micelle concentration. J Polym Sci Part A: Polym Chem 37:4054–4065. https://doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4054::AID-POLA4>3.0.CO;2-7

    Article  Google Scholar 

  21. Polpanich D, Tangboriboonrat P, Elaïssari A (2005) The effect of acrylic acid amount on the colloidal properties of polystyrene latex. Colloid Polym Sci 284:183–191. https://doi.org/10.1007/s00396-005-1366-6

    Article  CAS  Google Scholar 

  22. Kang K, Kan C, Du Y, Liu D (2006) Study on soap-free P(MMA-EA-AA or MAA) latex particles with narrow size distribution. Polym Adv Technol 17:193–198. https://doi.org/10.1002/pat.714

    Article  CAS  Google Scholar 

  23. Zhang J, Cheng S, Lu G, Cha S (2009) Kinetics and particle nucleation mechanism of St/BA/QBVPBr emulsifier-free cationic emulsion polymerization. J Appl Polym Sci 111:2092–2098. https://doi.org/10.1002/app.29276

    Article  CAS  Google Scholar 

  24. Li Z, Cheng H, Han C (2012) Mechanism of narrowly dispersed latex formation in a surfactant-free emulsion polymerization of styrene in acetone–water mixture. Macromolecules 45:3231–3239. https://doi.org/10.1021/ma202535j

    Article  CAS  Google Scholar 

  25. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769. https://doi.org/10.1021/la046829z

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Sun M, Duan Y, Hao H (2020) Superhydrophobic coatings based on raspberry-like nanoparticles and their applications on cotton. Colloids Surf A Physicochem Eng Asp 602:125039. https://doi.org/10.1016/j.colsurfa.2020.125039

    Article  CAS  Google Scholar 

  27. Yamamoto T, Nakayama M, Kanda Y, Higashitani K (2006) Growth mechanism of soap-free polymerization of styrene investigated by AFM. J Colloid Interface Sci 297(1):112–121. https://doi.org/10.1016/j.jcis.2005.10.025

    Article  CAS  PubMed  Google Scholar 

  28. Nagao D, Yamada Y, Inukai S, Ishii H, Konno M, Gu S (2015) Quantitative understanding of the self-sharpening of growing polymer particle size distributions in soap-free emulsion polymerization. Polym. 68:176–182. https://doi.org/10.1016/j.polymer.2015.05.020

    Article  CAS  Google Scholar 

  29. Bai Y, Luo X, Han Y, Liu B, Zhang J, Zhang M (2020) Facile synthesis of narrow particle size distribution, high solid content, cationic polymer latexes by macroemulsion polymerization-based particle coagulation mechanism. J Macromol Sci, Part A: Pure Appl Chem 57:116–122. https://doi.org/10.1080/10601325.2019.1673175

    Article  CAS  Google Scholar 

  30. Zhang B, Lu J, Liu X, Jin H, He G, Guo X (2018) Synthesis of controllable carboxylated polystyrene microspheres by two-step dispersion polymerization with hydrocarbon alcohols. Int J Polym Sci 2018:1–8. https://doi.org/10.1155/2018/8702597

    Article  CAS  Google Scholar 

  31. Fariascepeda L, Herreraordonez J, Hernandezmartinez A, Estevez M, Rosalesmarines L (2017) Super-enhanced particle nucleation in styrene emulsion polymerization in the presence of sodium styrene sulfonate. Colloid Interface Sci 500:126–132. https://doi.org/10.1016/j.jcis.2017.04.015

    Article  CAS  Google Scholar 

  32. Arunbabu D, Sanga Z, Seenimeera K, Jana T (2009) Emulsion copolymerization of styrene and sodium styrene sulfonate: kinetics, monomer reactivity ratios and copolymer properties. Polym Int 58:88–96. https://doi.org/10.1002/pi.2497

    Article  CAS  Google Scholar 

  33. Adelnia H, Pourmahdian S (2014) Soap-free emulsion polymerization of poly (methyl methacrylate-co-butyl acrylate): effects of anionic comonomers and methanol on the different characteristics of the latexes. Colloid Polym Sci 292:197–205. https://doi.org/10.1007/s00396-013-3043-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos.51903017) and People’s Goverment of Jilin Province Development and Reform Commission Program of China (2019C041-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baijun Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Xu, L., Liu, Y. et al. Preparation of monodisperse polystyrene microspheres with different functional groups using soap-free emulsion polymerization. Colloid Polym Sci 299, 1095–1102 (2021). https://doi.org/10.1007/s00396-021-04830-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04830-9

Keywords

Navigation