Skip to main content
Log in

Synthesis of polymer microspheres of different diameters in the presence of carbofunctional organosilicon surfactants

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Based on systematic studies of kinetic regularities of heterophase polymerization of styrene and methyl methacrylate (MMA), and study of physical and chemical properties of polymer suspensions, it was established that stable functional polymer suspensions with narrow particle size distribution with diameters from 0.4 to 1.4 μm are formed, when functional organosilicon surfactants are used as stabilizers at 0.5–1.0 wt% surfactant concentration per monomer mass.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable

References

  1. Iemma F, Spizzirri UG, Muzzalupo R et al (2004) Spherical hydrophilic microparticles obtained by the radical copolymerisation of functionalised bovine serum albumin. Colloid Polym Sci 283:250–256. https://doi.org/10.1007/s00396-004-1071-x

    Article  CAS  Google Scholar 

  2. Volkova EV, Lukashevich AD, Levacheva IS, Levachev SM, Gusev SA, Gritskova IA (2013) Choosing polymer microspheres for carrying out the latex agglutination reaction in plates. Fine Chem Technol 8(6):68–72 (In Russ)

    CAS  Google Scholar 

  3. Volkova EV, Gritskova IA, Gusev SA, Lukashevich AD, Gusev AA, Levchenko EN, Zlydneva LA, Sochilina KO (2012) Design of polymeric microspheres for immunofluorescent analysis. Biotechnol Russ 74-81:4 (In Russ)

    Google Scholar 

  4. Chirikova O.V. (1994) Synthesis of functional polymer suspensions in the presence of organosilicon surfactants Dissertation, Moscow State Academy of Fine Chemical Technology named M.V. Lomonosov, Moscow. (in Russian)

  5. Istratov VV, Vasnev VA, Milushkova EV, Gritskova IA, Levachev SM, Gusev SA (2015) Heterophase polymerization of styrene in the presence of biodegradable surfactants. Polym Sci Ser B 57(6):567–575. https://doi.org/10.1134/S1560090415060068

    Article  CAS  Google Scholar 

  6. Adikanova DB, Eligbaeva GG, Gritskova IA, Milushkova EV, Prokopov NI, Levachev SM (2015) Synthesis of polystyrene suspensions in the presence of mixture soluble and insoluble in water surfactants. Int Polym Sci Technol 43(10):17–22

    Article  Google Scholar 

  7. Kadantseva AI, Gritskova IA, Krashenninnikova IG (2012) Polymerization of vinyl monomers in the presence of surfactants insoluble in water. Plastics. 8:26–29

    Google Scholar 

  8. Gritskova IA, Papkov VS, Krasheninnikova IG, Evtushenko AM (2007) Heterophase polymerization of styrene in the presence of organosilicon compounds of various natures. Polym Sci Ser A 49(3):235–241. https://doi.org/10.1134/S0965545X07030017

    Article  Google Scholar 

  9. Gritskova YA, Levshenko EN, Mansurova ER, Hachaturyan IV, Prokopov NY, Simakova GA, Kopylov VM (2008) Polymerization of styrene in the presence of different siliconorganic detergents. Fine Chem Technol 3(5):114–117

    Google Scholar 

  10. Mehta SC, Somasundaran P, Maldarelli C, Kulkarni R (2006) Effects of functional groups on surface pressure-area isotherms of hydrophilic silicone polymers. Langmuir. 22:9566–9571. https://doi.org/10.1021/la061265f

    Article  CAS  PubMed  Google Scholar 

  11. Arslanov VV (1994) Polymeric monolayers and Langmuir-Blodgett films. The influence of the chemical structure of the polymer and external conditions on the formation and properties of organized planar ensembles. Success Chem 63(1):3–42. https://doi.org/10.1070/RC1994v063n01ABEH000069

    Article  CAS  Google Scholar 

  12. Zlydneva LA (2013) Heterophasic polymerization of vinil monomers in the presence of silicon-organic surfaces of different nature. Dissertation. Moscow State University of Fine Chemical Technologies named M.V. Lomonosov. (in Russian)

  13. Poteryaev AA, Chalykh AE, Stoyanov OV (2016) Diffusion zones in polystyrene-polysiloxane systems. Bull Technol Univ 19(1):29–38

    CAS  Google Scholar 

  14. Gritskova IA, Zhdanov AA, Chirikova OV, Shchegolikhina OI (1994) Extraordinary effect of polymer suspension stabilization in the presence of carboxyl-containing polydimethylsiloxanes. Rep Acad Sci 334(1):57–59

    CAS  Google Scholar 

  15. Gritskova IA, Simakova GA, Levshenko EN, Kopylov VM, Markuze IY, Gusev SA (2010) Polymerization of styrene in the presence of organosilicon surfactants of various natures. Polym Sci Ser B 52(9):542–548. https://doi.org/10.1134/S1560090410090046

    Article  Google Scholar 

  16. Klein SM, Manoharan VN, Pine DJ et al (2003) Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym Sci 282:7–13. https://doi.org/10.1007/s00396-003-0915-0

    Article  CAS  Google Scholar 

  17. Gritskova IA, Kopylov VV, Milushkova EV, Zlydneva LA, Shragin DI, Levachev SM (2015) Novel approach to synthesis of monodisperse polymeric microspheres: heterophase polymerization of styrene and methyl methacrylate in presence of water-insoluble functional PDMSS. Silicon. 7(2):217–227. https://doi.org/10.1007/s12633-014-9265-4

    Article  CAS  Google Scholar 

  18. State Standard 53654.1-2009. Paint materials. Method for determination of density. Part 1. Pyknometer method. Moscow, Standartinform Publ. 2010, 22 (in Russian)

  19. Ioffe BV (1974) Refractometric chemistry methods. Moscow, Russian

  20. Benson SW, North AM (1959) A simple dilatometric method of determining the rate constants of chain reactions. II. The Effect of Viscosity on the Rate Constants of Polymerization Reactions. Am Chem Soc 81(6):1339–1345. https://doi.org/10.1021/ja01515a019

    Article  CAS  Google Scholar 

  21. State Standard 18249-72. Plastics. Method for viscosity determination of diluted polymer solution. Moscow, Standartinform Publ. 2000, 11 (in Russian)

  22. Braun D, Cherdron H, Rehahn M, Ritter H, Voit B (2013) Methods and techniques for synthesis, characterization, processing, and modification of polymers. Polymer Synthesis: Theory and Practice. Springer, Berlin

    Chapter  Google Scholar 

  23. Kim C, Gurau MC, Cremer PS, Yu H (2008) Chain conformation of poly(dimethyl siloxane) at the air/water interface by sum frequency generation. Langmuir. 24:10155–10160. https://doi.org/10.1021/la800349q

    Article  CAS  PubMed  Google Scholar 

  24. Lenk TJ, Lee DHT, Koberstein JT (1994) End group effects on monolayers of functionally-terminated poly(dimethylsiloxanes) at the air-water interface. Langmuir. 10:1857–1864. https://doi.org/10.1021/la00018a040

    Article  CAS  Google Scholar 

  25. Esker AR, Yu H (2012) Langmuir monolayers of siloxanes and silsesquioxanes. In: Owen M, Dvornic P (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht

    Google Scholar 

  26. Malakhova YN, Buzin AI, Chvalun SN (2018) Linear and cyclolinear polysiloxanes in bulk and in thin films at the surface of liquid subphase and solid substrates. Surface. X-Ray, Synchronous Neutron Res 4:51–62. https://doi.org/10.7868/S020735281804008X

    Article  Google Scholar 

  27. Gritskova IА, Shragin DI, Levachev SМ, Ezhova АА, Milushkova ЕV, Kopylov VМ, Gusev SА, Prokopov NI, Lobanova NA (2016) Functional jrganosilicon substances as stabilizers of polymeric suspensions. Fine Chem Technol 11(2):5–16. https://doi.org/10.32362/2410-6593-2016-11-2-5-16

    Article  CAS  Google Scholar 

  28. Gritskova IA, Ezhova AA, Chalikh AE, Levachev SM, Chvalun SN (2019) Effect of the composition and structure of carbofunctional oligodimethylsiloxanes on their colloidal-chemical properties. Russ Chem Bull 68(1):132–136. https://doi.org/10.1007/s11172-019-2428-0

    Article  CAS  Google Scholar 

  29. Ezhova AA, Gritskova IA, Chvalun SN, Malakhova YN, Chalykh AE, Levachev SM, Shragin DI, Muzafarov AM (2019) Behavior of organosilicon surfactants in langmuir films on the surface of water. Polym Sci Ser A 61(2):149–156. https://doi.org/10.1134/S0965545X19020044

    Article  CAS  Google Scholar 

  30. Harkins WD (1947) A general theory of the mechanism of emulsion polymerization. J Am Chem Soc 69(6):1428–1444. https://doi.org/10.1021/ja01198a053

    Article  CAS  PubMed  Google Scholar 

  31. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16(6):592–599. https://doi.org/10.1063/1.1746951

    Article  CAS  Google Scholar 

  32. Su WF (2013) Radical chain polymerization. Principles of Polymer Design and Synthesis. Lecture Notes in Chemistry, vol 82. Springer, Berlin

    Chapter  Google Scholar 

  33. Gritskova IA, Sivaev AA, Gusev SA, Levachev SM, Lobanova NA, Andreeva AV, Chvalun SN (2019) Polymer microspheres for replacement of biological carriers in test systems operating on the principle of latex agglutination reaction. Russ Chem Bull 11:2075–2082

    Article  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research (RFBR), project number 19-33-60053.

Author information

Authors and Affiliations

Authors

Contributions

Inessa A. Gritskova—planning and control of the experiment, verification of the results, and project supervising. Anna A. Ezhova—synthesis, manuscript preparation. Anatolii E. Chalykh—planning and control of the experiment to study the physicochemical properties of surfactants, verification, and discussion of the results. Nadezhda A. Lobanova—measurement of polymer particles diameter and zeta potential. Aziz M. Muzafarov—synthesis of used organosilicon surfactants. Sergey N. Chvalun—discussion of the results. Sergey A. Gusev—scanning electron microscopy of the obtained polymer particles. Sergey M. Levachev—discussion of the colloidal chemical properties of organosilicon surfactants.

Corresponding author

Correspondence to Anna A. Ezhova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritskova, I.A., Ezhova, A.A., Chalykh, A.E. et al. Synthesis of polymer microspheres of different diameters in the presence of carbofunctional organosilicon surfactants. Colloid Polym Sci 299, 823–833 (2021). https://doi.org/10.1007/s00396-020-04805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04805-2

Keywords

Navigation