Skip to main content

Advertisement

Log in

NMR investigation of the thermogelling properties, anomalous diffusion, and structural changes in a Pluronic F127 triblock copolymer in the presence of gold nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We studied the thermogelation of a triblock copolymer Pluronic F127 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) in an aqueous solvent in the presence of gold nanoparticles, using pulsed field gradient diffusion, NMR temperature experiments, relaxation measurements, and 2D heteronuclear NMR experiments. Pulsed field gradient diffusion NMR is a powerful technique to study the transition between diffusive regimes in a polymer mesh which are modulated by phase transitions in the polymeric network. In the isotropic phase, the triblock copolymer diffusion is a classical Fickian process. As the onset of gelation occurs, diffusion in the system becomes anomalous and the mean square displacement in the direction of the applied magnetic field gradient shows a power law dependence. Our experiments show that the introduction of gold nanoparticles leads to a disruption of gelation and the shifting of the formation of the ordered phase of the triblock copolymer to a higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexandridis P, Hutton TA (1995) Poly(ethylene oxide)·poly(propylene oxide)·poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 96:1–46

    Article  CAS  Google Scholar 

  2. Bodratti A, Alexandridis P (2018). J Funct Biomater 9(1):11

    Article  PubMed Central  CAS  Google Scholar 

  3. Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery-state of the art and future trends. Adv Eng Mater 13:B61–B87

    Article  CAS  Google Scholar 

  4. Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, Kalia Y, Guerrero DQ, Ganem Quintanar A (2006). J Pharm Pharm Sci 9(3):339

    CAS  PubMed  Google Scholar 

  5. Rassing J, Mackenna W, Bandopadhyay S, Eyring E (1984). J Mol Liq 27:165

    CAS  Google Scholar 

  6. Ma Y, Zhang C, Chen X, Jiang H, Pan S, Easteal AJ, Sun X (2012) The influence of modified Pluronic F127 copolymers with higher phase transition temperature on arsenic trioxide-releasing properties and toxicity in a subcutaneous model of rats. AAPS PharmSciTech 13:441–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212

    Article  CAS  PubMed  Google Scholar 

  8. Du J, Fan L, Liu Q (2012) pH-sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules 45:8275–8283

    Article  CAS  Google Scholar 

  9. Arafa MG, El-Kased RF, Elmazar MM (2018) Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci Rep 8(1):13674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Walderhaug H, Sderman O (2009) NMR studies of block copolymer micelles. Curr Opin Colloid Interface Sci 14(3):171–177

    Article  CAS  Google Scholar 

  11. Walderhaug H, Soderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56(4):406–425

    Article  CAS  PubMed  Google Scholar 

  12. Xu M, Xu M, Chen Q, Zhang S (2009). Colloid Polym Sci 288(1):85

    Article  CAS  Google Scholar 

  13. Bakkour Y, Darcos V, Li S, Coudane J (2012) Diffusion ordered spectroscopy (DOSY) as a powerful tool for amphiphilic block copolymer characterization and for critical micelle concentration (CMC) determination. Polym Chem 3:2006

    Article  CAS  Google Scholar 

  14. Barhoum S, Palit S, Yethiraj A (2016). Prog Nucl Magn Reson Spectrosc 94:1

    Article  PubMed  CAS  Google Scholar 

  15. Ulrich K, Galvosas P, Karger J, Grinberg F (2009) Effects of self-assembly on diffusion mechanisms of triblock copolymers in aqueous solution. Phys Rev Lett 102:037801

    Article  PubMed  CAS  Google Scholar 

  16. Matsukawa S, Ando I (1997) Study of self-diffusion of molecules in a polymer gel by pulsed-gradient spin-echo 1H NMR. 2. Intermolecular hydrogen-bond interaction between the probe polymer and network polymer in N,N-dimethylacrylamide−acrylic acid copolymer gel systems. Macromolecules 30:8310–8313

    Article  CAS  Google Scholar 

  17. Ma JH, Guo C, Tang YL, Liu HZ (2007) 1H NMR spectroscopic investigations on the micellization and gelation of PEO−PPO−PEO block copolymers in aqueous solutions. Langmuir 23(19):9596–9605

    Article  CAS  PubMed  Google Scholar 

  18. Ma JH, Guo C, Tang YL, Wang J, Zheng L, Liang XF, Chen S, Liu HZ (2007) Salt-induced micellization of a triblock copolymer in aqueous solution: A1H nuclear magnetic resonance spectroscopy study. Langmuir 23(6):3075–3083

    Article  CAS  PubMed  Google Scholar 

  19. Abrahmsen-Alami S, Stilbs P (1994) 1H NMR self-diffusion and multifield 2H spin relaxation study of model associative polymer and sodium dodecyl sulfate aggregation in aqueous solution. J Phys Chem 98:6359–6367

    Article  CAS  Google Scholar 

  20. Masaro L, Zhu XX (1999) Interaction of ethylene glycol with poly(vinyl alcohol) in aqueous systems as studied by NMR spectroscopy. Langmuir 15(24):8356–8360

    Article  CAS  Google Scholar 

  21. Hansen EW, Olafsen K, Klaveness TM, Kvernberg PO (1998) Probing the gelation of polyvinylalcohol-water glutaraldehyde within a porous material by 1H n.m.r. — a preliminary investigation. Polymer 39:1279–1287

    Article  CAS  Google Scholar 

  22. Walderhaug H, Nystrom B (1997) Anomalous diffusion in an aqueous system of a poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) triblock copolymer during gelation studied by pulsed field gradient NMR. J Phys Chem B 101(9):1524–1528

    Article  CAS  Google Scholar 

  23. Kumar BP, Priyadharsini SU, Prameela G, Mandal AB (2011) NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution. J Colloid Interface Sci 360:154–162

    Article  PubMed  CAS  Google Scholar 

  24. Nilsson M, Hakansson B, Soderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40(23):8250–8258

    Article  CAS  Google Scholar 

  25. Wei D, Ge L, Guo R (2018). Colloids Surf A Physicochem Eng Asp 553:1

    Article  CAS  Google Scholar 

  26. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  27. Yeo SY, Lee HJ, Jeon SH (2003). J Mater Sci 38:2143–2147

    Article  CAS  Google Scholar 

  28. Balan L, Malval JP, Schneider R, Burget D (2007) Silver nanoparticles: new synthesis, characterization and photophysical properties. Mater Chem Phys 104:417–421

    Article  CAS  Google Scholar 

  29. Coelho SC, Rangel M, Pereira MC, Coelho MAN, Ivanova G (2015) Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: a NMR based approach. Phys Chem Chem Phys 17:18971–18979

    Article  CAS  PubMed  Google Scholar 

  30. Lin J, Zhang H, Chen Z, Zheng Y (2010). ACS Nano 4(9):5421

    Article  CAS  PubMed  Google Scholar 

  31. Kerkhofs S, Willhammar T, Noortgate HVD, Kirschhock CEA, Breynaert E, Tendeloo GV, Bals S, Martens JA (2015) Self-assembly of Pluronic F127—silica spherical core–shell nanoparticles in cubic close-packed structures. Chem Mater 27(15):5161–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biswas S, Belfield KD, Das RK, Ghosh S, Hebard AF (2009) Block copolymer-mediated formation of superparamagnetic nanocomposites. Chem Mater 21(23):5644–5653

    Article  CAS  Google Scholar 

  33. Bothun G (2008) Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol 6:13

    Article  CAS  Google Scholar 

  34. Ramalho JPP, Gkeka P, Sarkisov L (2011) Structure and phase transformations of dppc lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Langmuir 27(7):3723–3730

    Article  CAS  Google Scholar 

  35. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251

    Article  CAS  PubMed  Google Scholar 

  36. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  PubMed  Google Scholar 

  37. Lin Y, Boker A, He J, Sill K, Xiang H, Abetz C, Li X, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell TP (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59

    Article  CAS  PubMed  Google Scholar 

  38. Cai LH, Panyukov S, Rubinstein M (2015) Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 48:847–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabir TS, Yan D, Milligan JR, Aruni AW, Nick KE, Ramon RH, Hughes JA, Chen Q, Kurti RS, Perry CC (2012) Kinetics of gold nanoparticle formation facilitated by triblock copolymers. J Phys Chem C 116:4431–4441

    Article  CAS  Google Scholar 

  40. Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212:197–211

    Article  CAS  PubMed  Google Scholar 

  41. Goncalves LC, Seabra AB, Pelegrino MT, de Araujo DR, Bernardes JS, Haddad PS (2017) Superparamagnetic iron oxide nanoparticles dispersed in Pluronic F127 hydrogel: potential uses in topical applications. RSC Adv 7:14496–14503

    Article  CAS  Google Scholar 

  42. Sun K, Raghavan SR (2010) Thermogelling aqueous fluids containing low concentrations of Pluronic F127 and laponite nanoparticles. Langmuir 26:8015–8020

    Article  CAS  PubMed  Google Scholar 

  43. Diniz IMA, Chen C, Xu X, Ansari S, Zadeh HH, Marques MM, Shi S, Moshaverinia A (2015) Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med 26:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gao Q, Liang Q, Yu F, Xu J, Zhao Q, Sun B (2011) Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system. Colloids Surf B: Biointerfaces 88:741–748

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Marmorat C, Vasilyev G, Jiang J, Koifman N, Guo Y, Talmon I, Zussman E, Gersappe D, Davis R, Rafailovich M (2019) Flow induced stability of Pluronic hydrogels: injectable and unencapsulated nucleus pulposus replacement. Acta Biomater 96:295–302

    Article  CAS  PubMed  Google Scholar 

  46. Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364

    Article  CAS  Google Scholar 

  47. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11

    Article  CAS  Google Scholar 

  48. Monz S, Tschope A, Birringer R (2008) Magnetic properties of isotropic and anisotropicCoFe2O4-based ferrogels and their application as torsional and rotational actuators. Phys Rev E 78:021404

    Article  CAS  Google Scholar 

  49. Ghosh S, Yang C, Cai T, Hu Z, Neogi A (2009) Oscillating magnetic field-actuated microvalves for micro- and nanofluidics. J Phys D Appl Phys 42:135501

    Article  CAS  Google Scholar 

  50. de Kort DW, van Duynhoven JPM, van As H, Mariette F (2015) Nanoparticle diffusometry for quantitative assessment of submicron structure in food biopolymer networks. Trends Food Sci Technol 42:13–26

    Article  CAS  Google Scholar 

  51. Nambam JS, Philip J (2012) Thermogelling properties of triblock copolymers in the presence of hydrophilic Fe3O4 nanoparticles and surfactants. Langmuir 28:12044–12053

    Article  CAS  PubMed  Google Scholar 

  52. Boucenna L, Royon L, Colinart P, Boudeville MAG, Mourchid A (2010) Structure and thermorheology of concentrated pluronic copolymer micelles in the presence of laponite particles. Langmuir 26:14430–14436

    Article  CAS  PubMed  Google Scholar 

  53. Pozzo DC, Walker LM (2005) Three-Dimensional Nanoparticle Arrays Templated by Self-Assembled Block-Copolymer Gels. Macromol Symp 227:203–210

    Article  CAS  Google Scholar 

  54. Castelletto V, Ansari IA, Hamley IW (2003) Influence of added clay particles on the structure and rheology of a hexagonal phase formed by an amphiphilic block copolymer in aqueous solution. Macromolecules 36:1694–1700

    Article  CAS  Google Scholar 

  55. Lungova M, Krutyeva M, Pyckhout-Hintzen W, Wischnewski A, Monkenbusch M, Allgaier J, Ohl M, Sharp M, Richter D (2016) Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys Rev Lett 117:147803

    Article  CAS  PubMed  Google Scholar 

  56. Fernandes RMF, Buzaglo M, Shtein M, Bar IP, Regev O, Marques EF, Furo I (2014) Lateral diffusion of dispersing molecules on nanotubes as probed by NMR. J Phys Chem C 118:582–589

    Article  CAS  Google Scholar 

  57. Angelescu DG, Vasilescu M, Anastasescu M, Baratoiu R, Donescu D, Teodorescu VS (2012) Synthesis and association of Ag(0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloids Surf A Physicochem Eng Asp 394:57–66

    Article  CAS  Google Scholar 

  58. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of Nanoparticle Location in Block Copolymers. J Am Chem Soc 127:5036–5037

    Article  CAS  PubMed  Google Scholar 

  59. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  CAS  Google Scholar 

  60. Soong R, Nieh MP, Nicholson E, Katsaras J, Macdonald PM (2010) Bicellar mixtures containing Pluronic F68: morphology and lateral diffusion from combined SANS and PFG NMR studies. Langmuir 26:2630–2638

    Article  CAS  PubMed  Google Scholar 

  61. Nystrom B, Walderhaug H, Hansen FK (1993) Dynamic crossover effects observed in solutions of a hydrophobically associating water-soluble polymer. J Phys Chem 97(29):7743–7752

    Article  CAS  Google Scholar 

  62. Fleischer G, Sillescu H, Skirda VD (1994) Molecular motion in concentrated solutions of spherical polystyrene microgels studied with the pulsed field gradient n.m.r. Polymer 35:1936–1941

    Article  CAS  Google Scholar 

  63. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27(15):4145–4159

    Article  CAS  Google Scholar 

  64. Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solutions. Macromolecules 25(20):5440–5445

    Article  CAS  Google Scholar 

  65. Okamura E, Yoshii N (2008). J Chem Phys 129(21):12B602

    Article  CAS  Google Scholar 

  66. Kim TH, Kim E, Do C, Ahn H, Lee H, Han Y (2016) Anomalistic self-assembled phase behavior of block copolymer blended with organic derivative depending on temperature. Macromolecules 49(17):6541–6548

    Article  CAS  Google Scholar 

  67. Alexandridis P, Holzwarth JF, Hatton TA (1994). Macromolecules 27(9):2414

    Article  CAS  Google Scholar 

  68. Nivaggioli T, Tsao B, Alexandridis P, Hatton TA (1995) Microviscosity in Pluronic and tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles. Langmuir 11(1):119–126

    Article  CAS  Google Scholar 

  69. Li L, Lim LH, Wang Q, Jiang SP (2008) Thermoreversible micellization and gelation of a blend of Pluronic polymers. Polymer 49(7):1952–1960

    Article  CAS  Google Scholar 

  70. Mortensen K, Talmon Y (1995) Cryo-TEM and SANS Microstructural Study of Pluronic Polymer Solutions. Macromolecules 28:8829–8834

    Article  CAS  Google Scholar 

  71. Yu C, Yu Y, Zhao D (2000). Chem Commun 2000:575

    Article  Google Scholar 

  72. Xiong XY, Tam KC, Gan LH (2003) Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules 36:9979–9985

    Article  CAS  Google Scholar 

  73. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29:4350–4356

    Article  CAS  PubMed  Google Scholar 

  74. Pragatheeswaran AM, Chen SB (2013) Effect of chain length of PEO on the gelation and micellization of the Pluronic F127 copolymer aqueous system. Langmuir 29:9694–9701

    Article  CAS  PubMed  Google Scholar 

  75. Li G, Hao J, Li H, Fan D, Sui W (2015) Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry. Colloid Polym Sci 293:787–796

    Article  CAS  Google Scholar 

  76. Pragatheeswaran AM, Chen SB, Chen CF, Chen BH (2014) Micellization and gelation of PEO-PPO-PEO binary mixture with non-identical PPO block lengths in aqueous solution. Polymer 55:5284–5291

    Article  CAS  Google Scholar 

  77. Ma J, Guo C, Tang Y, Xiang J, Chen S, Wang J, Liu H (2007) Micellization in aqueous solution of an ethylene oxide–propylene oxide triblock copolymer, investigated with 1H NMR spectroscopy, pulsed-field gradient NMR, and NMR relaxation. J Colloid Interface Sci 312(2):390–396

    Article  CAS  PubMed  Google Scholar 

  78. Fraenza CC, Mattea C, Farrher GD, Ordikhani-Seyedlar A, Stapf S, Anoardo E (2018) Rouse dynamics in PEO-PPO-PEO block-copolymers in aqueous solution as observed through fast field-cycling NMR relaxometry. Polymer 150:244–253

    Article  CAS  Google Scholar 

  79. Yardimci H, Chung B, Harden J, Leheny R (2005) Phase behavior and local dynamics of concentrated triblock copolymer micelles. J Chem Phys 123:244908

    Article  CAS  PubMed  Google Scholar 

  80. Ma JH, Guo C, Tang YL, Liu HZ (2007). Langmuir 23(19):9596 PMID: 17655339

    Article  CAS  PubMed  Google Scholar 

  81. Wada H, Kitazawa Y, Kuroki S, Tezuka Y, Yamamoto T (2015) NMR relaxometry for the thermal stability and phase transition mechanism of flower-like micelles from linear and cyclic amphiphilic block copolymers. Langmuir 31(32):8739–8744

    Article  CAS  PubMed  Google Scholar 

  82. Prameela GKS, Kumar BVNP, Aswal VK, Mandal AB (2013) Influence of water-insoluble nonionic copolymer E6P39E6 on the microstructure and self-aggregation dynamics of aqueous SDS solution—NMR and SANS investigations. Phys Chem Chem Phys 15:17577–17586

    Article  CAS  PubMed  Google Scholar 

  83. Cosgrove T, Rodin V, Murray M, Buscall R (2007) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 2. Diffusion of macromolecules. J Polym Res 14(3):175–180

    Article  CAS  Google Scholar 

  84. Jee AY, Curtis-Fisk JL, Granick S (2014) Nanoparticle diffusion in methycellulose thermoreversible association polymer. Macromolecules 47:5793–5797

    Article  CAS  Google Scholar 

  85. Scheller H, Fleischer G, Karger J (1997) Restricted self-diffusion in an aqueous solution of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer. Colloid Polym Sci 275:730–735

    Article  CAS  Google Scholar 

  86. Li Y, Shi T, Sun Z, An L, Huang Q (2006) Investigation of sol−gel transition in Pluronic F127/D2O solutions using a combination of small-angle neutron scattering and Monte Carlo simulation. J Phys Chem B 110(51):26424–26429

    Article  CAS  PubMed  Google Scholar 

  87. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24:13148–13154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pragatheeswaran AM, Chen SB (2016) The influence of poly(acrylic acid) on micellization and gelation characteristics of aqueous Pluronic F127 copolymer system. Colloid Polym Sci 294:107–117

    Article  CAS  Google Scholar 

  89. Sarkar B, Alexandridis P (2015). Prog Polym Sci 40:33

    Article  CAS  Google Scholar 

  90. Gaines MK, Smith SD, Samseth J, Bockstaller MR, Thompson RB, Rasmussen KO, Spontak RJ (2008) Nanoparticle-regulated phase behavior of ordered block copolymers. Soft Matter 4:1609

    Article  CAS  PubMed  Google Scholar 

  91. Gioffredi E, Boffito M, Calzone S, Giannitelli SM, Rainer A, Trombetta M, Mozetic P, Chiono V (2016) Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Procedia CIRP 49:125–132

    Article  Google Scholar 

  92. Jiang J, Malal R, Li C, Lin MY, Colby RH, Gersappe D, Rafailovich MH, Sokolov JC, Cohn D (2008) Rheology of thermoreversible hydrogels from multiblock associating copolymers. Macromolecules 41:3646–3652

    Article  CAS  Google Scholar 

  93. Suherman AL, Zampardi G, Amin HMA, Young NP, Compton RG (2019) Tannic acid capped gold nanoparticles: capping agent chemistry controls the redox activity. Phys Chem Chem Phys 21:4444–4451

    Article  CAS  PubMed  Google Scholar 

  94. Ranoszek-Soliwoda K, Omaszewska T, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowsk G, Grobelny J (2017). J Nanopart Res 19(8):273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

All experiments were performed on Bruker Avance-III 600 MHz and 400 MHz NMR spectrometers at the NMR Research Facility at IISER Mohali. The TEM micrographs were recorded at the TEM Facility at IISER Mohali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Dorai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure with size histogram of Pluronic F127 micelles and TEM micrographs of Pluronic F127 at different length scales. Table of diffusion coefficient values of Pluronic F127 (20 w/w%) aqueous solution in the temperature range 11-47°C. (PDF 3411 kb)

ESM 1

(PDF 3411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, J., Nanda, R. & Dorai, K. NMR investigation of the thermogelling properties, anomalous diffusion, and structural changes in a Pluronic F127 triblock copolymer in the presence of gold nanoparticles. Colloid Polym Sci 298, 1571–1585 (2020). https://doi.org/10.1007/s00396-020-04740-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04740-2

Keywords

Navigation