Skip to main content
Log in

Thermo-responsiveness of giant vesicles supporting hindered amines as reactive sites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The thermo-responsiveness of giant vesicles supporting 2,2,6,6-tetramethylpiperidine (TP), the hindered amine, and its reactivity on the vesicle surface were evaluated with the aim of creating a new artificial biomembrane model using the polymer vesicles having reactive sites on the surface. A light-scattering study demonstrated that the TP-supporting spherical vesicles reversibly self-assembled by responding to temperature changes. The vesicles underwent a two-step disruption by heating, the first, transformation into much smaller and deformed vesicles, and the second, transformation into micelles through the budding separation from the granulated vesicle surface. The vesicles were rapidly restored by cooling due to the aggregation of the micelles. The TP supported on the vesicle surface underwent oxidation by H2O2 to convert into 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), accompanied by transformation from the spherical shape into a sheet. The TEMPO underwent a further reduction by L(+)-ascorbic acid into the hydroxylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elgsaeter A, Stokke BT, Mikkelsen A, Branton D (1986) The molecular basis of erythrocyte shape. Science 234:1217–1223

    CAS  PubMed  Google Scholar 

  2. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    CAS  PubMed  Google Scholar 

  3. Austin II JR, Staehelin LA (2011) Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155:1601–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshida E (2013) Giant vesicles prepared by nitroxide-mediated photo-controlled/living radical polymerization-induced self-assembly. Colloid Polym Sci 291:2733–2739

    CAS  Google Scholar 

  5. Yoshida E (2016) Worm-like vesicle formation by photo-controlled/living radical polymerization-induced self-assembly of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid). Colloid Polym Sci 294:1857–1863

    CAS  Google Scholar 

  6. Yoshida E (2019) Perforated giant vesicles composed of amphiphilic diblock copolymer: new artificial biomembrane model of nuclear envelope. Soft Matter 15:9849–9857

    CAS  PubMed  Google Scholar 

  7. Yoshida E (2017) Fabrication of anastomosed tubular networks developed out of fenestrated sheets through thermo responsiveness of polymer giant vesicles. ChemXpress 10(1):118:1–118:11811

  8. Yoshida E (2015) Morphological changes in polymer giant vesicles by intercalation of a segment copolymer as a sterol model in plasma membrane. Colloid Polym Sci 293:1835–1840

    CAS  Google Scholar 

  9. Vonmont-Bachmann PA, Walde P, Luisi PL (1994) Lipase-catalyzed reactions in vesicles as an approach to vesicle self-reproduction. J Liposome Res 4:1135–1158

    CAS  PubMed  Google Scholar 

  10. Takakura K, Toyota T, Sugawara T (2003) A novel system of self-reproducing giant vesicles. J Am Chem Soc 125:8134–8140

    CAS  PubMed  Google Scholar 

  11. Jaeger DA, Schilling III CL, Zelenin AK, Li B, Kubicz-Loring E (1999) Reaction of a vesicular functionalized surfactant with 2-chloroethyl phenyl sulfide, a mustard simulant. Langmuir 15:7180–7185

    CAS  Google Scholar 

  12. Watanabe K, Takizawa S, Murata S (2011) Hydrogen generation using a photoinduced electron transport system with a molecular catalyst in vesicles. Chem Lett 40:345–347

    CAS  Google Scholar 

  13. Shohda K, Sugawara T (2006) DNA polymerization on the inner surface of a giant liposome for synthesizing an artificial cell model. Soft Matter 2:402–408

    CAS  PubMed  Google Scholar 

  14. Kloboucek A, Behrisch A, Faix J, Sackmann E (1999) Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study. Biophys J 77:2311–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Barton P, Hunter CA, Potter TJ, Webb SJ, Williams NH (2002) Transmembrane signaling. Angew Chem Int Ed 41:3878–3880

    CAS  Google Scholar 

  16. Langton MJ, Williams NH, Hunter CA (2017) Recognition-controlled membrane translocation for signal transduction across lipid bilayers. J Am Chem Soc 139:6461–6466

    CAS  PubMed  Google Scholar 

  17. Ding Y, Williams NH, Hunter CA (2019) A synthetic vesicle-to-vesicle communication system. J Am Chem Soc 141:17847–17853

    CAS  PubMed  Google Scholar 

  18. Menger FM, Balachander N (1992) Chemically-induced aggregation, budding, and fusion in giant vesicles: direct observation by light microscopy. J Am Chem Soc 114:5862–5863

    CAS  Google Scholar 

  19. Kahya N, Pe’cheur E-I, de Boeij WP, Wiersma DA, Hoekstra D (2001) Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys J 81:1464–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Randles EG, Bergethon PR (2013) A photodependent switch of liposome stability and permeability. Langmuir 29:1490–1497

    CAS  PubMed  Google Scholar 

  21. Terasawa H, Nishimura K, Suzuki H, Matsuura T, Yomo T (2012) A coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. PNAS 109:5942–5947

    CAS  PubMed  Google Scholar 

  22. Yoshida E (2018) Morphology transformation of giant vesicles by a polyelectrolyte for an artificial model of a membrane protein for endocytosis. Colloid Surf Sci 3(1):6–11

    Google Scholar 

  23. Yoshida E (2014) Fission of giant vesicles accompanied by hydrophobic chain growth through polymerization-induced self-assembly. Colloid Polym Sci 292:1463–1468

    CAS  Google Scholar 

  24. Strzelbicki J, Barrtsch RA (1982) Transport of alkali metal cations across liquid membranes by crown ether carboxylic acids. J Membr Sci 10:35–47

    CAS  Google Scholar 

  25. Kim K, Geng J, Tunuguntla R, Comolli LR, Grigoropoulos CP, Ajo-Franklin CM, Noy A (2014) Osmotically-driven transport in carbon nanotube porins. Nano Lett 14:7051–7056

    CAS  PubMed  Google Scholar 

  26. Kandasamy YS, Cai J, Beler A, Sang MSJ, Andrews PD, Murphy RS (2015) Photocontrol of ion permeation in lipid vesicles with amphiphilic dithienylethenes. Org Biomol Chem 13:2652–2663

    CAS  PubMed  Google Scholar 

  27. Yoshida E (2015) Enhanced permeability of rhodamine B into bilayers comprised of amphiphilic random block copolymers by incorporation of ionic segments in the hydrophobic chains. Colloid Polym Sci 293:2437–2443

    CAS  Google Scholar 

  28. Yoshida E (2015) Fabrication of microvillus-like structure by photopolymerization-induced self-assembly of an amphiphilic random block copolymer. Colloid Polym Sci 293:1841–1845

    CAS  Google Scholar 

  29. Yoshida E (2019) Morphological stability of worm-like vesicles consisting of amphiphilic diblock copolymer against external stress. Chem Rep 1(2):102–107

    Google Scholar 

  30. Lee JC, Bermudez H, Discher BM, Sheehan MA, Won YY, Bates FS, Discher DE (2001) Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 73:135–145

    CAS  PubMed  Google Scholar 

  31. Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    CAS  PubMed  Google Scholar 

  32. Mecke A, Dittrich C, Meier W (2006) Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter 2:751–759

    CAS  PubMed  Google Scholar 

  33. Yoshida E (2015) Morphology control of giant vesicles by composition of mixed amphiphilic random block copolymers of poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid). Colloid Polym Sci 293:249–256

    CAS  Google Scholar 

  34. Yoshida E (2016) Morphological changes in giant vesicles comprised of amphiphilic block copolymers by incorporation of ionic segments into the hydrophilic block chain. Cogent Chem 2(1212319):1–16

    Google Scholar 

  35. Kim CJ, Kurauchi S, Uebayashi T, Fujisaki A, Kimura S (2017) Morphology change from nanotube to vesicle and monolayer/bilayer alteration by amphiphilic block polypeptides having aromatic groups at C terminal. Bull Chem Soc Jpn 90:568–573

    CAS  Google Scholar 

  36. Minagawa M (1989) New developments in polymer stabilization. Polym Degrad Stab 25:121–141

    CAS  Google Scholar 

  37. Padron AJC (1990) Performance and mechanisms of hindered amine light stabilizers in polymer photostabilization. J Macromol Sci Rev Macromol Chem C30:107–154

    Google Scholar 

  38. Effendy JPC, Kepert CJ, Louis LM, Morien TC, Skelton BW, White AH (2006) The structural systematics of protonation of some important nitrogen-base ligands. III Some (univalent) anion salts of some hindered unidentate nitrogen bases. Z Anorg Allg Chem 632:1312–1325

    CAS  Google Scholar 

  39. Hageman HJ, Overeem T (1981) Photoinitiators and photoinitiation, 4. Trapping of primary radicals from photoinitiators by 2,2,6,6-tetramethylpiperidinoxyl. Makromol Chem Rapid Commun 2:719–724

    CAS  Google Scholar 

  40. Hubbell WL, Metcalfe JC, Metcalfe SM, McConnell HM (1970) The interaction of small molecules with spin-labelled erythrocyte membranes. Biochim Biophys Acta Biomembr 219:415–427

    CAS  Google Scholar 

  41. Yoshida E, Takata T, Endo T (1992) Oxidation of polymeric terminal diols with iron(III) or copper(II) salts mediated by the nitroxyl radical. Macromolecules 25:7282–7285

    CAS  Google Scholar 

  42. Yoshida E, Ogawa H (2007) Micelle formation induced by disproportionation of stable nitroxyl radicals supported on a diblock copolymer. J Oleo Sci 56:297–302

    CAS  PubMed  Google Scholar 

  43. Yoshida E (2014) Elucidation of acceleration mechanisms by a photosensitive onium salt for nitroxide-mediated photocontrolled/living radical polymerization. Open J Polym Chem 4:47–55

    Google Scholar 

  44. Venditti P, Stefano LD, Meo SD (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13:71–82

    CAS  PubMed  Google Scholar 

  45. Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827:1320–1331

    CAS  PubMed  Google Scholar 

  46. Rochaix J (2011) Reprint of: regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:878–886

    CAS  PubMed  Google Scholar 

  47. Yoshida E (2020) Preparation of giant vesicles supporting hindered amine on their shells through photo living radical polymerization-induced self-assembly. J Dispers Sci Technol 41:763–770

    CAS  Google Scholar 

  48. Yoshida E (2018) Photo nitroxide-mediated living radical polymerization of hindered amine-supported methacrylate. J Res Update Polym Sci 7:21–28

    CAS  Google Scholar 

  49. Yoshida E (2019) CO2-responsive behavior of polymer giant vesicles supporting hindered amine. Colloid Polym Sci 297:661–666

    CAS  Google Scholar 

  50. Miyazawa T, Endo T, Shiihashi S, Ogawara M (1985) Selective oxidation of alcohols by oxoaminium salts (R2N:O+ X-). J Organomet Chem 50:1332–1334

    CAS  Google Scholar 

  51. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Google Scholar 

  52. Kobayashi S, Uyama H, Yamamoto I, Matsumoto Y (1990) Preparation of monodispersed poly(methyl methacrylate) particle in the size of micron range. Polym J 22:759–761

    CAS  Google Scholar 

  53. Kurosaki T, Lee KW, Okawara M (1972) Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4-methacryloyl derivatives of 2,2,6,6-tetramethylpiperidine. J Polym Sci, Polym Chem Ed 10:3295–3310

    CAS  Google Scholar 

  54. Paleos CM, Dais P (1977) Ready reduction of some nitroxide free radicals with ascorbic acid. J Chem Soc Chem Commun 10:345–346

    Google Scholar 

  55. Zhdanov RI, Golubev VA, Gida VM, Rozantsev EG (1971) Interaction of iminoxyl radicals with antimony pentachloride. Dokl Akad Nauk SSSR 196:856–857

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Hirofumi Kurita at Toyohashi University of Technology for his support of the ESR measurements. The author also thanks the JSPS Grant-in-Aid for Scientific Research for the financial support (Grant Number 18K04863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, E. Thermo-responsiveness of giant vesicles supporting hindered amines as reactive sites. Colloid Polym Sci 298, 1205–1214 (2020). https://doi.org/10.1007/s00396-020-04697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04697-2

Keywords

Navigation