Skip to main content
Log in

Elasticity of disordered binary crystals

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The properties of crystals consisting of several components can be widely tuned. Often solid solutions are produced, where substitutional or interstitional disorder determines the crystal thermodynamic and mechanical properties. The chemical and structural disorder impedes the study of the elasticity of such solid solutions, since standard procedures like potential expansions cannot be applied. We present a generalization of a density functional–based approach recently developed for one-component crystals to multi-component crystals. It yields expressions for the elastic constants valid in solid solutions with arbitrary amounts of point defects and up to the melting temperature. Further, both acoustic and optical phonon eigenfrequencies can be computed in linear response from the equilibrium particle densities and established classical density functionals. As a proof of principle, dispersion relations are computed for two different binary crystals: A random fcc crystal as an example for a substitutional, and a disordered sodium chloride structure as an example of an interstitial solid solution. In cases where one of the components couples only weakly to the others, the dispersion relations develop characteristic signatures. The acoustic branches become flat in much of the first Brillouin zone, and a crossover between acoustic and optic branches takes place at a wavelength which can far exceed the lattice spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The e.o.m. presented are not of the type of generalized Langevin equations. The latter involve a fluctuating force term orthogonal to the subspace of slow variables. We assume this term to be negligible which certainly is true for the hydrodynamic acoustic phonon modes.

  2. While used in both a phenomenological and a linear response sense, the variable prescript “δ” indicates a local fluctuation average throughout this text.

  3. The characteristic length scale of the system is set by the large sphere diameter which we set to 1 arbitrary unit for ease of discussion

  4. One could also take a plain large sphere fcc structure as a reference and consider the small spheres as interstitials instead.

  5. Bear in mind that momentum and displacement amplitude are related by the mass density of each species.

References

  1. Ríos de Anda I, Turci F, Sear RP, Royall CP (2017) Long-lived non-equilibrium interstitial solid solutions in binary mixtures. J Chem Phys 147(12):124504

    PubMed  Google Scholar 

  2. Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks/Cole cengage learning

  3. Bartlett P, Ottewill RH, Pusey PN (1992) Superlattice formation in binary mixtures of hard-sphere colloids. Phys Rev Lett 68:3801

    CAS  PubMed  Google Scholar 

  4. Baumgartl J, Dietrich J, Dobnikar J, Bechinger C, von Grünberg HH (2008) Phonon dispersion curves of two-dimensional colloidal crystals: the wavelength-dependence of friction. Soft Matter 4(11):2199–2206

    CAS  Google Scholar 

  5. Born M, Huang K (1988) Dynamical Theory of Crystal Lattices. Clarendon Press

  6. Chaikin P, Lubensky T (1995) Principles of Condensed Matter Physics. Cambridge University Press

  7. Evans R (1979) The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28(2):143–200

    CAS  Google Scholar 

  8. Filion L, Hermes M, Ni R, Vermolen ECM, Kuijk A, Christova CG, Stiefelhagen JCP, Vissers T, Van Blaaderen A, Dijkstra M (2011) Self-assembly of a colloidal interstitial solid with tunable sublattice doping. Phys Rev Lett 107(16):168302

    CAS  PubMed  Google Scholar 

  9. Fleming PD, Cohen C (1976) Hydrodynamics of solids. Phys Rev B 13:500–516

    Google Scholar 

  10. Forster D (1975) Hydrodynamic fluctuations, broken symmetry, and correlation functions. W. A Benjamin

  11. Hansen JP, McDonald IR (1986) Theory of Simple Liquids, 2nd edn. Academic Press, London

    Google Scholar 

  12. Häring JM, Walz C, Szamel G, Fuchs M (2015) Coarse-grained density and compressibility of nonideal crystals: General theory and an application to cluster crystals. Phys Rev B 92:184103

    Google Scholar 

  13. Higler R, Appel J, Sprakel J (2013) Substitutional impurity-induced vitrification in microgel crystals. Soft Matter 9:5372

    CAS  Google Scholar 

  14. Higler R, Sprakel J (2017) Doping colloidal bcc crystals—interstitial solids and meta-stable clusters. Scientific Reports 7(1):12634

    PubMed  PubMed Central  Google Scholar 

  15. Huang S, Tian F, Vitos L (2018) Elasticity of high-entropy alloys from ab initio theory. J Mater Res 33(19):2938–2953

    CAS  Google Scholar 

  16. Iatsevitch S, Forstmann F (1997) Density profiles at liquid-vapor and liquid-liquid interfaces: an integral equation study. J Chem Phys 107(17):6925–6935

    CAS  Google Scholar 

  17. Ikeda Y, Grabowski B, Körmann F (2019) Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys, Mater Charact, pp 464–511

  18. Jacobs RL (1983) A mean-field theory of melting. J Phys C Solid State Phys 16(2):273–283

    CAS  Google Scholar 

  19. Jarić MV, Mohanty U (1988) Density-functional theory of elastic moduli: Hard-sphere and Lennard-Jones crystals. Phys Rev B 37(9):4441–4457

    Google Scholar 

  20. Keim P, Maret G, Herz U, von Grünberg HH (2004) Harmonic lattice behavior of two-dimensional colloidal crystals. Phys Rev Lett 92:215504

    CAS  PubMed  Google Scholar 

  21. Lax M (1991) Symmetry principles and magnetic symmetry in solid state physics. Dover Publications

  22. Lebowitz JL (1964) Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres. Phys Rev 133(4A):A895–A899

    Google Scholar 

  23. Lin SC, Oettel M (2018) Phase diagrams and crystal-fluid surface tensions in additive and nonadditive two-dimensional binary hard-disk mixtures. Phys Rev E 98:012608

    CAS  PubMed  Google Scholar 

  24. Lovett R, Mou CY, Buff FP (1976) The structure of the liquid–vapor interface. J Chem Phys 65 (2):570–572

    CAS  Google Scholar 

  25. Mahato MC, Krishnamurthy HR, Ramakrishnan TV (1991) Phonon dispersion of crystalline solids from the density-functional theory of freezing. Phys Rev B 44(18):9944–9966

    CAS  Google Scholar 

  26. Martin PC, Parodi O, Pershan PS (1972) Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys Rev A 6(6):2401–2420

    CAS  Google Scholar 

  27. McCarley JS, Ashcroft NW (1997) Correlation functions in classical solids. Phys Rev E 55(5):4990–5003

    CAS  Google Scholar 

  28. McCoy JD, Haymet ADJ (1989) Theory of freezing: The inhomogeneous Ornstein-Zernike equation. Int J Thermophys 10(1):87–100

    CAS  Google Scholar 

  29. van der Meer B, Lathouwers E, Smallenburg F, Filion L (2017) Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions. J Chem Phys 147(23):234903

    PubMed  Google Scholar 

  30. Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110(1):1–13

    CAS  Google Scholar 

  31. Pronk S, Frenkel D (2001) Point defects in hard-sphere crystals. J Phys Chem B 105(28):6722–6727

    CAS  Google Scholar 

  32. Pronk S, Frenkel D (2004) Large effect of polydispersity on defect concentrations in colloidal crystals. J Chem Phys 120(14):6764–6768

    CAS  PubMed  Google Scholar 

  33. Ras TM (2017) Phonons and Elasticity in Disordered binary Crystals. Ph.D. thesis, Universität Konstanz. http://kops.uni-konstanz.de/handle/123456789/39350

  34. Reinke D, Stark H, von Grünberg HH, Schofield AB, Maret G, Gasser U (2007) Noncentral forces in crystals of charged colloids. Phys Rev Lett 98:038301

    CAS  PubMed  Google Scholar 

  35. Rick SW, Haymet ADJ (1989) Density functional theory for the freezing of Lennard-Jones binary mixtures. J Chem Phys 90(2):1188

    CAS  Google Scholar 

  36. Rick SW, Haymet ADJ (1990) Freezing of mixtures - the density functional theory. J Phys Chem 94 (13):5212–5220

    CAS  Google Scholar 

  37. Rowlinson JSJS, Widom B (2002) Molecular Theory of Capillarity. Dover Publications

  38. Sanz E, Valeriani C, Vissers T, Fortini A, Leunissen ME, van Blaaderen A, Frenkel D, Dijkstra M (2009) Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation. J Phys Cond Matt 20(49):494247

    Google Scholar 

  39. Shi S, Markmann J, Weissmüller J (2018) Verifying larché–Cahn elasticity, a milestone of 20th-century thermodynamics. Proc Natl Acad Sci U S A 115(43):10914–10919

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh SP, Das SP (2007) A density functional model for the binary crystal of hard spheres with vacancies. J Chem Phys 126(6):064507

    PubMed  Google Scholar 

  41. Smithline SJ, Haymet ADJ (1987) Density functional theory for the freezing of 1:1 hard sphere mixtures. J Chem Phys 86(11):6486

    CAS  Google Scholar 

  42. Szafarczyk M (2017) Dispersion relations of disordered binary crystals. Bachelor thesis, Universität Konstanz

  43. Szamel G, Ernst MH (1993) Slow modes in crystals: a method to study elastic constants. Phys Rev B 48 (1):112–118

    CAS  Google Scholar 

  44. Szewczyk D, Jeżowski A, Vdovichenko GA, Krivchikov AI, Bermejo FJ, Tamarit JL, Pardo LC, Taylor JW (2015) Glassy dynamics versus thermodynamics: The case of 2-Adamantanone. J Phys Chem B 119 (26):8468–8474

    CAS  PubMed  Google Scholar 

  45. Tauber J, Higler R, Sprakel J (2016) Anomalous dynamics of interstitial dopants in soft crystals. Proc Natl Acad Sci 113(48):13660–13665

    CAS  PubMed  Google Scholar 

  46. Tosi MP, Tozzini V (1994) Vibrational and elastic properties of the hot solid related to the static and dynamic structure of the liquid within density functional theory. Philos Mag Part B 69(5):833–848

    CAS  Google Scholar 

  47. Tozzini V, Tosi M (1995) Vibrational and elastic properties of alkali halides near melting. Philos Mag B 72(6):577–588

    CAS  Google Scholar 

  48. Vermolen ECM, Kuijk A, Filion LC, Hermes M, Thijssen JHJ, Dijkstra M, van Blaaderen A (2009) Fabrication of large binary colloidal crystals with a nacl structure. Proc Nat Acad Sci 106(38):16063–16067

    CAS  PubMed  Google Scholar 

  49. Wagner H (1966) Long-wavelength excitations and the Goldstone theorem in many-particle systems with “broken symmetries”. Zeitschrift für Phys 195(3):273–299

    CAS  Google Scholar 

  50. Walz C (2009) Elastic Constants and Displacement Fields in Crystals with Point Defects. Ph.D. thesis, University of Konstanz. http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-78632

  51. Walz C, Fuchs M (2010) Displacement field and elastic constants in nonideal crystals. Phys Rev B 81 (13):134110

    Google Scholar 

  52. Wertheim MS (1963) Exact solution of the Percus-Yevick integral equation for hard spheres. Phys Rev Lett 10(8):321–323

    Google Scholar 

  53. Wertheim MS (1976) Correlations in the liquid-vapor interface. J Chem Phys 65(6):2377

    CAS  Google Scholar 

Download references

Acknowledgments

For helpful insight into their work on the NaχCl1 structure, we thank M. Dijkstra and A. P. Gantapara. M. Oettel, C. Walz, F. Miserez, J. Häring, R. Haussmann, and in particular R. Schilling supported this work by many helpful discussions. We acknowledge support from the DFG through SFB 1214 project B2.

Funding

We acknowledge financial support from the DFG through SFB 1214 project B2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Fuchs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation the rotational LMBW-Equation

The generalization of the derivation for one-component systems [51] to the case of several species is straightforward. To begin with, the coupling to external fields can be species-dependent. As a consequence, species-dependent external potentials \( \mathcal {V}^{\mathsf {s}}_{\textsf {ext}} \) need to be introduced for which the functional Taylor expansion reads

$$ \delta\mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})=\sum\limits_{\mathsf{s}^{\prime}}\int\mathsf{d}^{d}r^{\prime} \frac{\delta \mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})}{{\delta} n^{\mathsf{\mathsf{s}^{\prime}}}(\boldsymbol{r}^{\prime})}{\delta}n^{\mathsf{\mathsf{s}^{\prime}}}(\boldsymbol{r}^{\prime}). $$
(39)

The invariance of the internal state of a crystal under global translations and rotations naturally extends to the case of several species. The spatial variation of a rotation δ𝜃 can be expressed by

$$ \boldsymbol{r}\overset{\boldsymbol{\delta\theta}}{\longrightarrow}\tilde{\boldsymbol{r}}=\boldsymbol{r}+\boldsymbol{\delta\theta}\times\boldsymbol{r}+\mathcal{O}\left( \boldsymbol{\delta\theta}^{2}\right). $$
(40)

We insert the leading order of Eq. (40) into the variation Eq. (39),

$$ \boldsymbol{\delta\theta}\times\boldsymbol{r}\cdot\boldsymbol{\nabla}\delta \mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r}) = \sum\limits_{\mathsf{s}^{\prime}}\int\mathsf{d}^{d}r^{\prime} \frac{\delta \mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})}{{\delta}n^{\mathsf{\mathsf{s}^{\prime}}}(\boldsymbol{r}^{\prime})}\boldsymbol{\delta\theta}\times\boldsymbol{r}\cdot\boldsymbol{\nabla}n^{\mathsf{\mathsf{s}^{\prime}}}(\boldsymbol{r}^{\prime}). $$
(41)

In combination with the DFT relation

$$ \upbeta\frac{\delta \mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})}{{\delta}n^{\mathsf{\mathsf{s}^{\prime}}}(\boldsymbol{r}^{\prime})}=c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})-\delta_{\mathsf{ss^{\prime}}}\frac{\delta({\Delta}\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})} $$
(42)

and the cyclicity of the cross product, we obtain the rotational LMBW-Eq. (23b)

$$ \begin{array}{@{}rcl@{}} &&\boldsymbol{r}\times\boldsymbol{\nabla}\left[\ln n^{\mathsf{s}}(\boldsymbol{r})+\upbeta \mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})\right]\\ &&{}={\sum}_{\mathsf{s^{\prime}}}\int\mathsf{d}^{d}r^{\prime} c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\boldsymbol{r}^{\prime}\times\boldsymbol{\nabla}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}). \end{array} $$
(43)

This yields Eq. (23b) in the special case of vanishing external potential.

Appendix B: Derivation of long-wavelength limit

The proof that the dynamical matrix \( \tilde {\boldsymbol {\mathsf {\Lambda }}} \) has d branches of eigenvalues which vanish like q2 for long wavelength starts from Eq. (26). It reads, expanded up to linear order in wavevector

$$ \begin{array}{@{}rcl@{}} &&\frac{\tilde{\boldsymbol{\mathrm{\Lambda}}}^{\mathsf{11, \textsf{exc}}}(\boldsymbol{q})}{\varrho_{0}}{}\\ &&=\sum\limits_{\mathsf{s,s^{\prime}}}\iint \mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} [1-i\boldsymbol{q}\cdot(\boldsymbol{r}-\boldsymbol{r}^{\prime})]c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime}){}\\ &&\times \left[(i\boldsymbol{\nabla}+\boldsymbol{q})n^{\mathsf{s}}(\boldsymbol{r})i\boldsymbol{\nabla}^{\prime} -i\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})\boldsymbol{q}\right]n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})+\mathcal{O}(\boldsymbol{q}^{2}) \\ &&=\sum\limits_{\mathsf{s}} \int\mathsf{d}^{d}r (i\boldsymbol{\nabla}+\boldsymbol{q})n^{\mathsf{s}}(\boldsymbol{r}) \times{} \\ && \times i\sum\limits_{\mathsf{s^{\prime}}}\int\mathsf{d}^{d}r^{\prime} c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime}) \boldsymbol{\nabla}^{\prime} n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}){}\\ && -i\sum\limits_{\mathsf{s^{\prime}}} \int\mathsf{d}^{d}r^{\prime} n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})\sum\limits_{\mathsf{s}}\int\mathsf{d}^{d}r c^{\mathsf{s's}}(\boldsymbol{r}^{\prime},\boldsymbol{r})\boldsymbol{\nabla} n^{\mathsf{s}}(\boldsymbol{r})\boldsymbol{q}{}\\ &&+i\boldsymbol{q}\cdot\sum\limits_{\mathsf{s,s^{\prime}}}\iint \mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} (\boldsymbol{r}-\boldsymbol{r}^{\prime})c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime}){} \\ && \times \boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r}) \boldsymbol{\nabla}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}) + \mathcal{O}(\boldsymbol{q}^{2}) . \end{array} $$
(44)

In the second term of Eq. (44), we used \( c^{\mathsf {ss^{\prime }}}(\boldsymbol {r},\boldsymbol {r}^{\prime })=c^{\mathsf {s's}}(\boldsymbol {r}^{\prime },\boldsymbol {r}) \) which follows from the definition Eq. (1). The first two terms now display the right-hand side of Eq. (23a). Before we rewrite these parts, application of the same Eq. (23a) brings the third term to vanish by

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{\mathsf{s,s^{\prime}}}\iint \mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} \boldsymbol{r}\left[\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})\right]c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\boldsymbol{\nabla}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}) {}\\ &={}& \sum\limits_{\mathsf{s}} \int\mathsf{d}^{d}r \boldsymbol{r}\left[\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})\right]\frac{\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})} \\ &={}&\sum\limits_{\mathsf{s,s^{\prime}}}\iint \mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} \boldsymbol{r}^{\prime}\left[\boldsymbol{\nabla}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})\right]c^{\mathsf{s's}}(\boldsymbol{r}^{\prime},\boldsymbol{r})\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r}) . \end{array} $$
(45)

For the remaining terms, we end up with

$$ \begin{array}{@{}rcl@{}} \frac{\tilde{\boldsymbol{\mathrm{\Lambda}}}^{\mathsf{11, \textsf{exc}}}(\boldsymbol{q})}{\varrho_{0}} &=&i\sum\limits_{\mathsf{s}}\int\mathsf{d}^{d}r \left[ (i\boldsymbol{\nabla}+\boldsymbol{q})n^{\mathsf{s}}(\boldsymbol{r})\right]\frac{\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})}+{}\\ && -i\sum\limits_{\mathsf{s}}\int\mathsf{d}^{d}r n^{\mathsf{s}}(\boldsymbol{r})\frac{\boldsymbol{\nabla}n^{\mathsf{s}}(\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})}\boldsymbol{q} + \mathcal{O}(\boldsymbol{q}^{2}) . \end{array} $$
(46)

Looking at Eq. (19b), this can be easily identified as minus the ideal gas contribution in \( \tilde {\boldsymbol {\mathrm {\Lambda }}}^{\mathsf {11}}(\boldsymbol {q}) \) up to terms of order \( \mathcal {O}(\boldsymbol {q}^{2}) \). In the off-diagonal block \(\tilde {\boldsymbol {\mathrm {\Lambda }}}^{\mathsf {12}}(\boldsymbol {q}) = \tilde {\boldsymbol {\mathrm {\Lambda }}}^{\mathsf {21}^{\dagger }} (\boldsymbol {q})\), only terms of \( \mathcal {O}(\boldsymbol {q}^{0}) \) can be ruled out by the same calculations as shown above. This ensures the existence of linear dispersion relations in the long-wavelength limit q0. All structures considered in this paper are inversion-symmetric such that Λ(q) is even in q. In that special case, the off-diagonal blocks start out like q2. Appendix C gives the specification of inversion symmetry that identifies the acoustic modes in the equations of our approach for the total momentum current.

Appendix C: Discussion of inversion symmetry

Within the context of crystals, inversion symmetry is commonly defined with reference to lattice sites as the equilibrium positions of particles. In the present approach, however, the Bravais lattice is not defined from a set of spatially periodic particle positions but only from the spatial periodicity of the equilibrium density n. In that sense, it is hard to identify a privileged point within a given crystal unit cell with respect to which n can be checked for inversion symmetry. The following definition of inversion symmetry also refers only to properties of a given species-independent crystal equilibrium density n where

$$ n(\boldsymbol{r}) = \sum\limits_{\boldsymbol{g}\in\mathbb{G}}n_{\boldsymbol{g}}e^{i\boldsymbol{g}\cdot\boldsymbol{r}}. $$
(47)

We consider n as inversion symmetric in the sense of the present binary crystal approach if and only if two particle species can be distinguished with equilibrium densities n1 and n2 such that n = n1 + n2 with

$$ \begin{array}{@{}rcl@{}} n^{\mathsf{s}}(\boldsymbol{r})&=&\sum\limits_{\boldsymbol{g}\in\mathbb{G}}n^{\mathsf{s}}_{\boldsymbol{g}}e^{i\boldsymbol{g}\cdot\boldsymbol{r}} \end{array} $$
(48)

and

$$ \begin{array}{@{}rcl@{}} n^{\mathsf{s}}_{\boldsymbol{g}} = n^{\mathsf{s}}_{-\boldsymbol{g}} = {n_{\boldsymbol{g}}^{\mathsf{s}}}^{\ast}, \forall \boldsymbol{g}\in\mathbb{G} \quad \mathsf{s}= 1,2 \end{array} $$
(49)

where the realness of the \( n^{\mathsf {s}}_{\boldsymbol {g}} \) follows from the definition Eq. (2). This means that two species equilibrium particle densities with a common reciprocal lattice and a common center of inversion can be unambiguously introduced. Note that in non-primitive crystals such as diamond, this requirement can at best be approximately fulfilled.

With the property Eq. (49) at hand, step by step the inversion symmetry of the dynamical matrix in the wave vector, \( \tilde {\boldsymbol {\mathsf {\Lambda }}}(\boldsymbol {q}) = \tilde {\boldsymbol {\mathsf {\Lambda }}}(-\boldsymbol {q}) \), can be inferred: Starting from the definition Eq. (20), immediately follows the inversion symmetry of \( C^{\mathsf {ss^{\prime }}}(\boldsymbol {r},\boldsymbol {r}^{\prime }) \) in both its arguments. This can be used in Eq. (22) to obtain the realness of the density fluctuation correlation matrix, \( J_{\boldsymbol {g}\boldsymbol {g}^{\prime }}^{\mathsf {ss^{\prime }}} = J_{\boldsymbol {g}\boldsymbol {g}^{\prime }}^{\mathsf {ss^{\prime \ast }}} \). The inversion symmetry in q of the dynamical matrix Λ then follows from its definition in Eq. (14) by sign changes in the summation \( {\sum }_{\boldsymbol {g}\boldsymbol {g}^{\prime }}\rightarrow {\sum }_{-\boldsymbol {g}-\boldsymbol {g}^{\prime }}\) and subsequent substitution. As a consequence \( \tilde {\boldsymbol {\mathsf {\Lambda }}} \) is even in q and, as required for a long-wavelength decoupling, the off-diagonal blocks are of leading order q2,

$$ \tilde{\boldsymbol{\mathrm{\Lambda}}}^{\mathsf{21}} = \tilde{\boldsymbol{\mathrm{\Lambda}}}^{\mathsf{12}^{\dagger}} =\mathcal{O}(\boldsymbol{q}^{2}). $$
(50)

Appendix D: Derivation of Voigt symmetries

As mentioned in the main text, in order to show the Voigt symmetries of the dynamical matrix [2], we work closely along the calculations in the single-component case[50]: Concerning μαβ, we combine both Eq. (2323) as “r × Eq. (23a)–Eq. (23b)” to obtain

$$ \boldsymbol{0} = \sum\limits_{\mathsf{s^{\prime}}}\int\mathsf{d}^{d}r^{\prime} c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\boldsymbol{r}^{\prime}\times\boldsymbol{\nabla}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}) . $$
(51)

Summation of this equation over s yields the symmetry Eq. (30a). In order to show Eq. (30b), some tedious recombinations [50] of Eq. (29b) lead to

$$ \begin{array}{@{}rcl@{}} &&\frac{4V}{k_{\textsf{B}}T} \sum\limits_{\mathsf{s,s^{\prime}}} \lambda_{\alpha\upbeta\gamma\delta}^{\mathsf{s,s^{\prime}}} \\ && = \sum\limits_{\mathsf{s,s^{\prime}}}\iint\mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\left( r_{\delta} \nabla_{\gamma}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}) + r_{\gamma} \nabla_{\delta}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})\right)\\ &&\times \left( \underbrace{ r_{\alpha}\nabla_{\upbeta} + r_{\upbeta}\nabla_{\alpha} } \underline{- r^{\prime}_{\upbeta}\nabla_{\alpha}- r^{\prime}_{\alpha}\nabla_{\upbeta}} \right)n^{\mathsf{s}}(\boldsymbol{r}) \end{array} $$
(52a)

and

$$ \begin{array}{@{}rcl@{}} &&\frac{4V}{k_{\textsf{B}}T} \sum\limits_{\mathsf{s,s^{\prime}}} \lambda_{\gamma\delta\alpha\upbeta}^{\mathsf{s,s^{\prime}}} \\ &&= \sum\limits_{\mathsf{s,s^{\prime}}}\iint\mathsf{d}^{d}r \mathsf{d}^{d}r^{\prime} c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\left( r_{\upbeta} \nabla_{\alpha}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime}) + r_{\alpha} \nabla_{\upbeta}^{\prime}n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})\right)\\ &&\times \left( \underbrace{ r_{\gamma}\nabla_{\delta} + r_{\delta}\nabla_{\gamma} } \underline{- r^{\prime}_{\delta}\nabla_{\gamma}- r^{\prime}_{\gamma}\nabla_{\delta}} \right)n^{\mathsf{s}}(\boldsymbol{r}) . \end{array} $$
(52b)

The underlined parts in both Eqs. (52) can be identified by an interchange of both the integration and the summation variables, viz. \( \boldsymbol {r}\leftrightarrow \boldsymbol {r}^{\prime } \) and \( \mathsf {s}\leftrightarrow \mathsf {s}^{\prime } \). For the terms with the underbraces in Eq. (52), we employ the translational LMBW equation Eq. (23a) in reverse direction to the primed integral and summation:

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{\mathsf{s}^{\prime}}\int\mathsf{d}^{d}\boldsymbol{r}^{\prime}c^{\mathsf{ss^{\prime}}}(\boldsymbol{r},\boldsymbol{r}^{\prime})\left( r_{\upbeta} \nabla_{\alpha}^{\prime} + r_{\alpha} \nabla_{\upbeta}^{\prime}\right)n^{\mathsf{s^{\prime}}}(\boldsymbol{r}^{\prime})\\ &&=r_{\upbeta}\left( \frac{\nabla_{\alpha} n^{\mathsf{s}}(\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})} + \nabla_{\alpha}\mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r}) \right) + r_{\alpha}\left( \frac{\!\nabla_{\upbeta} n^{\mathsf{s}}(\boldsymbol{r})}{n^{\mathsf{s}}(\boldsymbol{r})} \!+ \!\nabla_{\upbeta}\mathcal{V}^{\mathsf{s}}_{\textsf{ext}}(\boldsymbol{r})\! \right) .\\ \end{array} $$
(53)

The terms with underbraces in Eq. (52) can also be identified which shows λαβγδ = λγδαβ and thus the symmetry of Eq. (30b).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ras, T., Szafarczyk, M. & Fuchs, M. Elasticity of disordered binary crystals. Colloid Polym Sci 298, 803–818 (2020). https://doi.org/10.1007/s00396-019-04589-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04589-0

Keywords

Navigation