Skip to main content
Log in

Dynamic moduli of flocculated kaolinite sediments: effect of salinity, flocculant dose, and settling time

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Oscillatory rheological assays are used to determine the viscoelastic properties of flocculated kaolinite sediments over a range of sodium chloride concentration, flocculant dose, and settling time. The plunger method is used to promote efficient mixing between flocculant, particles, and electrolytes, ensuring the least amount of disturbance in the system. The suspensions are prepared at natural pH, varying salt concentration and flocculant dose, and then allowed to settle for a pre-set time. The sediment is then subjected to oscillatory rheological tests under small amplitude oscillatory shear (SAOS) and large amplitude oscillatory shear (LAOS) regimes. It is very remarkable that the viscoelastic moduli respond differently depending on the variable being examined; on the one hand, the salinity changes the internal structure of the floc network conforming the sediment by adopting liquid-like characteristics as salinity increases, on the other hand, different flocculant doses and settling times lead to unaltered floc network architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ndlovu B, Farrokhpay S, Bradshaw D (2013) The effect of phyllosilicate minerals on mineral processing industry. Int. J. Miner. Process. 125:149–156. https://doi.org/10.1016/j.minpro.2013.09.011

    Article  CAS  Google Scholar 

  2. Jeldres RI, Toledo PG, Concha F, Stickland AD, Usher SP, Scales PJ (2014) Impact of seawater salts on the viscoelastic behavior of flocculated mineral suspensions. Colloids Surf. A Physicochem. Eng. Asp. 461:295–302. https://doi.org/10.1016/j.colsurfa.2014.08.003

    Article  CAS  Google Scholar 

  3. Quezada G, Jeldres RI, Goñi C, Toledo PG, Stickland AD, Scales PJ (2017) Viscoelastic behaviour of flocculated silica sediments in concentrated monovalent chloride salt solutions. Miner. Eng. 110:131–138. https://doi.org/10.1016/j.mineng.2017.04.017

    Article  CAS  Google Scholar 

  4. Costine A, Cox J, Travaglini S, Lubansky A, Fawell P, Misslitz H (2018) Variations in the molecular weight response of anionic polyacrylamides under different flocculation conditions. Chem. Eng. Sci. 176:127–138. https://doi.org/10.1016/j.ces.2017.10.031

    Article  CAS  Google Scholar 

  5. Rose-Innes IH, Nossel S (1983) The rheology and pumping of thickened activated sludge. Water. Sci. Technol. 15:59–76. https://doi.org/10.2166/wst.1983.0007

    Article  CAS  Google Scholar 

  6. Williams DJ, Williams K (1978) Electrophoresis and zeta potential of kaolinite. J. Colloid. Interface. Sci. 65:79–87. https://doi.org/10.1016/0021-9797(78)90260-6

    Article  CAS  Google Scholar 

  7. Zhou Z, Gunter WD (1992) The nature of the surface charge of kaolinite. Clay. Clay Miner. 40:365–368

    Article  CAS  Google Scholar 

  8. van Olphen H (1977) An introduction to clay colloid chemistry2nd edn. John Wiley & Sons, New York

    Google Scholar 

  9. Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J. Rheol (N Y N Y) 47:1493–1504. https://doi.org/10.1122/1.1608952

    Article  CAS  Google Scholar 

  10. Amarasinghe PM, Abelev A (2015) Rheological behavior of artificial flocculated clay/guar-gum suspensions. IEEE J. Ocean. Eng. 40:874–886. https://doi.org/10.1109/JOE.2014.2375632

    Article  Google Scholar 

  11. Bossard F, Moan M, Aubry T (2007) Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions. J Rheol (N Y N Y) 51:1253–1270. https://doi.org/10.1122/1.2790023

    Article  CAS  Google Scholar 

  12. Du J, Morris G, Pushkarova RA, St. C. Smart R (2010) Effect of surface structure of kaolinite on aggregation, settling rate, and bed density. Langmuir 26:13227–13235. https://doi.org/10.1021/la100088n

    Article  CAS  Google Scholar 

  13. Au P-I, Siow S-Y, Avadiar L, Lee EM, Leong YK (2014) Muscovite mica and koalin slurries: yield stress–volume fraction and deflocculation point zeta potential comparison. Powder. Technol 262:124–130. https://doi.org/10.1016/j.powtec.2014.04.078

    Article  CAS  Google Scholar 

  14. Au P-I, Leong Y-K (2016) Surface chemistry and rheology of slurries of kaolinite and montmorillonite from different sources. KONA Powder Part J. 33:17–32. https://doi.org/10.14356/kona.2016007

    Article  CAS  Google Scholar 

  15. Spearman J (2017) An examination of the rheology of flocculated clay suspensions. Ocean Dyn. 67:485–497. https://doi.org/10.1007/s10236-017-1041-8

    Article  Google Scholar 

  16. Boger DV (2013) Rheology of slurries and environmental impacts in the mining industry. Annu. Rev. Chem. Biomol. Eng. 4:239–257. https://doi.org/10.1146/annurev-chembioeng-061312-103347

    Article  CAS  PubMed  Google Scholar 

  17. Ferry JD (1980) Viscoelastic properties of polymers, third edit. Wiley, New York

  18. Lin Y, Phan-Thien N, Lee JBP, Khoo BC (2015) Concentration dependence of yield stress and dynamic moduli of kaolinite suspensions. Langmuir 31:4791–4797. https://doi.org/10.1021/acs.langmuir.5b00536

    Article  CAS  PubMed  Google Scholar 

  19. Lim HM, Misni M (2016) Colloidal and rheological properties of natural rubber latex concentrate. Appl. Rheol. 26:15659–15669. https://doi.org/10.3933/ApplRheol-26-15659

    Article  Google Scholar 

  20. Castro M, Giles DW, Macosko CW, Moaddel T (2010) Comparison of methods to measure yield stress of soft solids. J Rheol (N Y N Y) 54:81–94. https://doi.org/10.1122/1.3248001

    Article  CAS  Google Scholar 

  21. Poulos AS, Renou F, Jacob AR, Koumakis N, Petekidis G (2015) Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: frequency dependence. Rheol. Acta 54:715–724. https://doi.org/10.1007/s00397-015-0865-8

    Article  CAS  Google Scholar 

  22. Goñi C, Jeldres RI, Toledo PG, Stickland AD, Scales PJ (2015) A non-linear viscoelastic model for sediments flocculated in the presence of seawater salts. Colloids Surf. A Physicochem. Eng. Asp. 482:500–506. https://doi.org/10.1016/j.colsurfa.2015.06.036

    Article  CAS  Google Scholar 

  23. Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol (N Y N Y) 49:747–758. https://doi.org/10.1122/1.1895801

    Article  CAS  Google Scholar 

  24. Hyun K, Nam JG, Wilhellm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol. Acta. 45:239–249. https://doi.org/10.1007/s00397-005-0014-x

    Article  CAS  Google Scholar 

  25. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36:1697–1753. https://doi.org/10.1016/j.progpolymsci.2011.02.002

    Article  CAS  Google Scholar 

  26. Dimitriou CJ, Ewoldt RH, McKinley GH (2013) Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J. Rheol (N Y N Y) 57:27–70. https://doi.org/10.1122/1.4754023

    Article  CAS  Google Scholar 

  27. Khandavalli S, Rothstein JP (2015) Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol. Acta 54:601–618. https://doi.org/10.1007/s00397-015-0855-x

    Article  CAS  Google Scholar 

  28. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107:51–65. https://doi.org/10.1016/S0377-0257(02)00141-6

    Article  CAS  Google Scholar 

  29. Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Nonnewton Fluid Mech 112:237–250. https://doi.org/10.1016/S0377-0257(03)00102-2

    Article  CAS  Google Scholar 

  30. Cocard S, Tassin JF, Nicolai T (2000) Dynamical mechanical properties of gelling colloidal disks. J Rheol (N Y N Y) 44:585–594. https://doi.org/10.1122/1.551107

    Article  CAS  Google Scholar 

  31. Michot LJ, Baravian C, Bihannic I, Maddi S, Moyne C, Duval J́̂FL, Levitz P, Davidson P (2009) Sol−gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir 25:127–139. https://doi.org/10.1021/la801894a

    Article  CAS  PubMed  Google Scholar 

  32. Paineau E, Michot LJ, Bihannic I, Baravian C (2011) Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. Langmuir 27:7806–7819. https://doi.org/10.1021/la2001267

    Article  CAS  PubMed  Google Scholar 

  33. Chemeda YC, Deneele D, Christidis GE, Ouvrard G (2015) Influence of hydrated lime on the surface properties and interaction of kaolinite particles. Appl Clay Sci 107:1–13. https://doi.org/10.1016/j.clay.2015.01.019

    Article  CAS  Google Scholar 

  34. Lin Y, Cheah LK-J, Phan-Thien N, Khoo BC (2016) Effect of temperature on rheological behavior of kaolinite and bentonite suspensions. Colloids Surf. A Physicochem. Eng. Asp. 506:1–5. https://doi.org/10.1016/j.colsurfa.2016.06.012

    Article  CAS  Google Scholar 

  35. Jeldres RI, Piceros EC, Leiva WH, Toledo PG, Herrera N (2017) Viscoelasticity and yielding properties of flocculated kaolinite sediments in saline water. Colloids Surf A Physicochem Eng Asp 529:1009–1015. https://doi.org/10.1016/j.colsurfa.2017.07.006

    Article  CAS  Google Scholar 

  36. Dzuy NQ, Boger DV (1985) Direct yield stress measurement with the vane method. J Rheol (N Y N Y) 29:335–347. https://doi.org/10.1122/1.549794

    Article  Google Scholar 

  37. Barnes HA (1999) The yield stress—a review or “παντα ρει”—everything flows? J Nonnewton Fluid Mech 81:133–178. https://doi.org/10.1016/S0377-0257(98)00094-9

    Article  CAS  Google Scholar 

  38. Ovarlez G, Mahaut F, Bertrand F, Chateau X (2011) Flows and heterogeneities with a vane tool: magnetic resonance imaging measurements. J Rheol (N Y N Y) 55:197–223. https://doi.org/10.1122/1.3526349

    Article  CAS  Google Scholar 

  39. Stickland AD, Kumar A, Kusuma TE, Scales PJ, Tindley A, Biggs S, Buscall R (2015) The effect of premature wall yield on creep testing of strongly flocculated suspensions. Rheol Acta 54:337–352. https://doi.org/10.1007/s00397-015-0847-x

    Article  CAS  Google Scholar 

  40. Ma T, Yang R, Zheng Z, Song Y (2017) Rheology of fumed silica/polydimethylsiloxane suspensions. J Rheol (N Y N Y) 61:205–215. https://doi.org/10.1122/1.4973974

    Article  CAS  Google Scholar 

  41. Shih WY, Shih W-H, Aksay IA (2004) Elastic and yield behavior of strongly flocculated colloids. J Am Ceram Soc 82:616–624. https://doi.org/10.1111/j.1151-2916.1999.tb01809.x

    Article  Google Scholar 

  42. Romero CP, Jeldres RI, Quezada GR, Concha F, Toledo PG (2018) Zeta potential and viscosity of colloidal silica suspensions: effect of seawater salts, pH, flocculant, and shear rate. Colloids Surf A Physicochem Eng Asp 538:210–218. https://doi.org/10.1016/j.colsurfa.2017.10.080

    Article  CAS  Google Scholar 

  43. Vorob’ev PD, Krut’ko NP, Vorob’eva EV, Strnadova N (2008) Successive adsorption of polyacrylamide compounds from electrolyte solutions on the surface of kaolinitic clay particles. Colloid J 70:148–151. https://doi.org/10.1134/S1061933X08020051

    Article  Google Scholar 

  44. Zbik MS, Smart RSC, Morris GE (2008) Kaolinite flocculation structure. J Colloid Interface Sci 328:73–80. https://doi.org/10.1016/j.jcis.2008.08.063

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RIJ thanks CONICYT Fondecyt no. 11171036, and the CONICYT PIA ACM 170005. PGT thanks the financial support of Centro CRHIAM Project Conicyt/Fondap no. 15130015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo I. Jeldres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeldres, R.I., Piceros, E.C., Wong, Ls. et al. Dynamic moduli of flocculated kaolinite sediments: effect of salinity, flocculant dose, and settling time. Colloid Polym Sci 296, 1935–1943 (2018). https://doi.org/10.1007/s00396-018-4420-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4420-x

Keywords

Navigation