Skip to main content
Log in

Synthesis of large pore sized ordered mesoporous carbons using triconstituent self-assembly strategy under different acidic conditions and ratios of carbon precursor to structure directing agent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study was aimed at the synthesis of ordered mesoporous carbons with large pores. A triconstituent self-assembly strategy was employed, where resorcinol and formaldehyde were used as carbon source, tetraethyl orthosilicate was used as silica source, and triblock copolymer Pluronic F127 was used as structure directing agent. The effects of hydrochloric acid (HCl) concentration on the composite yield and the textural properties of carbons were investigated. The composite yield was seen to increase until a HCl concentration of 0.66 M. The effect of carbon source (resorcinol-formaldehyde (RF)) to Pluronic F127 ratio (RF/F127) was also investigated. The pore sizes slightly varied around 6 nm at low RF/F127 ratios, while the RF/127 = 2 ratio gave a 8.1-nm pore size and 711-m2/g surface area. The resultant carbons are promising for use in areas such as fuel cells, where diffusion limitations affect the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173:259–271

    Article  CAS  Google Scholar 

  2. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    Article  CAS  Google Scholar 

  3. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24

    Article  CAS  Google Scholar 

  4. Chang H, Joo S, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cells. J Mater Chem 17:3078–3088

    Article  CAS  Google Scholar 

  5. Sahu A, Sridhar P, Pitchumani S (2009) Mesoporous carbon for fuel cell electrodes. J Indian InstSci 89:437–445

    CAS  Google Scholar 

  6. Sun Z, Zhang X, Liang Y, Tong H, Xue R, Yang SD, Li H (2009) Ordered mesoporous carbons (OMCs) as supports of electrocatalysts for direct methanol fuel cells (DMFCs): effect of the pore characteristics of OMCs on DMFCs. JElectroanal Chem 633:1–6

    Article  CAS  Google Scholar 

  7. Calvillo L, Gangeri M, Perathoner S, Centi G, Moliner R, Lazaro M (2011) Synthesis and performance of platinum supported on ordered mesoporous carbons as catalysts for PEM fuel cells: effect of the surface chemistry of the support. Int J Hydrog Energy 36:9805–9814

    Article  CAS  Google Scholar 

  8. Hsueh Y, Yu C, Lee K, Tseng C, Su B, Wu S, Weng L (2013) Ordered porous carbon as the catalyst support for proton exchange membrane fuel cells. Int J Hydrog Energy 38:10998–11003

    Article  CAS  Google Scholar 

  9. Viva F, Bruno M, Francheschini E, Thomas Y, Sanchez G, Solorza-Feria O, Corti H (2014) Mesoporous carbon as Pt support for PEM fuel cell. Int J Hydrog Energy 39:8821–8826

    Article  CAS  Google Scholar 

  10. Stojmenovic M, Momcilovic M, Gavrilov N, Pasti IA, Mentus S, Jokic B, Babic B (2015) Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media. Electrochim Acta 153:130–139

    Article  CAS  Google Scholar 

  11. Hung C, Liou Z, Veerakumar P, Wu P, Liu T, Liu S (2016) Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel cell anode. Chin J Catal 37:43–53

    Article  CAS  Google Scholar 

  12. Ryoo R, Joo S, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via templatemediated structural transformation. J Phys Chem B 103:7743–7746

    Article  CAS  Google Scholar 

  13. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  14. Stein A (2003) Advances in microporous and mesoporous solids—highlights of recent progress. Adv Mater 15:763–775

    Article  CAS  Google Scholar 

  15. Raghuveer V, Manthiram A (2005) Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. J Electrochem Soc 152:1504–1510

    Article  Google Scholar 

  16. Liang C, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128:5316–5317

    Article  CAS  Google Scholar 

  17. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun 16:2125–2127

    Article  Google Scholar 

  18. Raghuveer V, Manthiram A (2004) Mesoporous carbon with larger pore diameter as an electrocatalyst support for methanol oxidation. Electrochem SolidState Lett 7:336–339

    Article  Google Scholar 

  19. Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic–organic self-assembly. Chem Mater 18:4447–4464

    Article  CAS  Google Scholar 

  20. Xie M, Dong H, Zhang D, Guo X, Ding W (2011) Simple synthesis of highly ordered mesoporous carbon by self-assembly of phenol-formaldehyde and block copolymers under designed aqueous basic/acidic conditions. Carbon 49:2459–2464

    Article  CAS  Google Scholar 

  21. Song L, Wang T, Xue H, Fan X, He J (2016) In-situ preparation of Pd incorporated ordered mesoporous carbon as efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 191:355–363

    Article  CAS  Google Scholar 

  22. Jin J, Tanaka S, Egashira Y, Nishiyama N (2010) KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. Carbon 48:1985–1989

    Article  CAS  Google Scholar 

  23. Xu J, Wang A, Zhang T (2012) A two-step synthesis of ordered mesoporous resorcinol-formaldehyde polymer and carbon. Carbon 50:1807–1816

    Article  CAS  Google Scholar 

  24. Hayashi A, Notsu H, Kimijima K, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53:6117–6125

    Article  CAS  Google Scholar 

  25. Ramoz-Sanchez G, Bruno M, Thomas Y, Corti H, Solorza-Feria O (2012) Mesoporous carbon supported nanoparticulated PdNi2: a methanol tolerant oxygen reduction electrocatalyst. Int J Hydrog Energy 37:31–40

    Article  Google Scholar 

  26. Jin J, Mitome T, Egashira Y (2011) Phase control of ordered mesoporous carbon synthesized by a soft-templating method. Colloids Surf A Physicochem Eng Asp 384:58–61

    Article  CAS  Google Scholar 

  27. Li M, Xue J (2012) Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route. J Colloid Interface Sci 377:169–175

    Article  CAS  Google Scholar 

  28. Nishiyama N, Tanaka S (2011) Synthesis of ordered mesoporous carbon by a soft-templating method. Carbon 49:3392–3393

    Article  Google Scholar 

  29. Tanaka S, Doi A, Nakatani N, Katayama Y, Miyake Y (2009) Synthesis of ordered mesoporous carbon films, powder, and fibers by direct triblock-copolymer templating method using an ethanol/water system. Carbon 47:2688–2698

    Article  CAS  Google Scholar 

  30. Leonard A, Gommes C, Piedboeuf M, Pirard J, Job N (2014) Rapid aqueous synthesis of ordered mesoporous carbons: investigation of synthesis variables and application as anode materials for Li-ion batteries. Microporous Mesoporous Mater 195:92–101

    Article  CAS  Google Scholar 

  31. Long D, Quiao W, Zhan L, Liang X, Ling L (2009) Effect of template and precursor chemistry on pore architectures of triblock copolymer templated mesoporous carbons. Microporous Mesoporous Mater 121:58–66

    Article  CAS  Google Scholar 

  32. Wang X, Liang C, Dai S (2008) Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol−formaldehyde and block copolymers under highly acidic conditions. Langmuir 24:7500–7505

    Article  CAS  Google Scholar 

  33. Liu L, Wang F, Shao G, Ma T, Yuan Z (2010) Synthesis of ultra-large mesoporous carbons from triblock copolymers and phloroglucinol/formaldehyde polymer. Carbon 48:2660–2664

    Article  CAS  Google Scholar 

  34. Kawashima D, Aihara T, Kobayashi Y, Kyotani T, Tomita A (2000) Preparation of mesoporous carbon from organic polymer/silica nanocomposite. Chem Mater 12:3397–3401

    Article  CAS  Google Scholar 

  35. Han S, Kim M, Hyeon T (2003) Direct fabrication of mesoporous carbons using in-situ polymerized silica gel networks as a template. Carbon 41:1525–1532

    Article  CAS  Google Scholar 

  36. Li HQ, Liu R, Zhao D, Xia Y (2007) Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45:2628–2635

    Article  CAS  Google Scholar 

  37. Zhuang X, Qian X, Lu J, Wan Y (2010) An alternative method to remove PEO-PPO-PEO template in organic-inorganic mesoporous nanocomposites by sulfuric acid extraction. ApplSurf Sci 256:5343–5348

    CAS  Google Scholar 

  38. Yoon S, Oh S, Lee C, Ryu J (2011) Pore structure tuning of mesoporous carbon prepared by direct templating method for application to high rate supercapacitor electrodes. J Electroanal Chem 650:187–195

    Article  CAS  Google Scholar 

  39. Jiang C, Zhou K, Zhong X, Zhong H (2014) A simple organic-inorganic co-assembling route to pore-expanded ordered mesoporous carbons with 2-D hexagonal mesostructure. Powder Technol 259:74–80

    Article  CAS  Google Scholar 

  40. Prabhu A, Shoaibi A, Srinivasakannan C (2014) Synthesis and characterization of mesoporous carbon by simple one-pot method. Mater Lett 136:81–84

    Article  CAS  Google Scholar 

  41. Deng Y, Yu T, Wan Y, Shi Y, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D (2007) Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J Am Chem Soc 129:1690–1697

    Article  CAS  Google Scholar 

  42. Jaroniec M, Gorka J, Choma J, Zawislak A (2009) Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon 47:3034–3040

    Article  CAS  Google Scholar 

  43. Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen Z, Tu B, Zhao D (2006) Triconstituent coassembly to ordered mesostructured polymer-silica and carbon silica nanocomposites and large-pore mesoporous carbons with high surface areas. J AmChem Soc 128:11652–11662

    Article  CAS  Google Scholar 

  44. Sterk L, Gorka J, Vinu A, Jaroniec M (2012) Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. Microporous Mesoporous Mater 156:121–126

    Article  CAS  Google Scholar 

  45. Su F, Zeng J, Bao X, Yu Y, Lee J, Zhao X (2005) Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem Mater 17:3960–3967

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of the Gazi University Scientific Research Projects Unit (project no. 06/2011-55 and 06/2013-02) is greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silver Güneş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneş, S., Güldür, Ç. Synthesis of large pore sized ordered mesoporous carbons using triconstituent self-assembly strategy under different acidic conditions and ratios of carbon precursor to structure directing agent. Colloid Polym Sci 296, 799–807 (2018). https://doi.org/10.1007/s00396-018-4301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4301-3

Keywords

Navigation