Skip to main content
Log in

Temperature and pH dual responsive 2-(dimethylamino)ethanethiol modified starch derivatives via a thiol-yne reaction for drug delivery

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a novel type of temperature/pH dual responsive polymer PyHES- DMAET ((2-hydroxy-3-(2-propynyloxy) propyl hydroxyethyl starch (PyHES))-2-(dimethylamino) ethanethiol (DMAET)) was synthesized. First, the temperature-responsive polymer PyHES was prepared via hydrophobic modification of hydroxyl groups in hydroxyethyl starch (HES) with propynylglycidyl ether (PGE) subsequently; pH-responsive tertiary amine group was connected to the propynyl group via a thiol-yne click reaction. Because PyHES-DMAET has pH-responsive amino groups and hydrophobic thioether groups, its aqueous solution exhibits excellent temperature/pH dual sensitivity, i.e., a good transference between the hydrophobic (or self-assembly) and hydrophilic (or swelling) state along as a result of changing temperature/pH values; these properties can be exploited, for hydrophobic drug release. The drug release reached 96% at 37 °C and a pH of 6.5. The drug loading capacity of PyHES-DMAET was increased by increasing the degree of substitution (DS) of the hydrophobic propynyl groups in the PyHES. The highest drug loading capacity for doxorubicin (DOX) achieved in this study was 33 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6.
Fig. 7

Similar content being viewed by others

References

  1. Maji T, Banerjee S, Biswas Y, Mandal TK (2015) Dual-stimuli-responsive L -serine-based Zwitter ionic UCST-TypePolymer with tunable thermosensitivity. Macromolecules 48:4957–4966

    Article  CAS  Google Scholar 

  2. Zhao Y, Ce S, Yang X, Shen B, Sun Y, Chen Y, Xiaowei X, Sun H, Kui Y, Yang B, Lin Q (2016) pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 10:5856–5863

    Article  CAS  Google Scholar 

  3. Yi L, Terrell JL, Tsao C-Y, Hsuan-Chen W, Javvaji V, Kim E, Yi C, Wang Y, Ulijn RV, Raghavan SR, Rubloff GW, Bentley WE, Payne GF (2012) Biofabricating multifunctional soft matter with enzymes and stimuli-responsive materials. Adv Funct Mater 22:3004–3012

    Article  Google Scholar 

  4. Bogomolova A, Kaberov L, Sedlacek O, Filippov SK, Stepanek P, Král V, Wang XY, Liu SL, Ye XD, Hruby M (2016) Double stimuli-responsive polymer systems: how to use crosstalk between pH- and thermosensitivity for drug depots. Eur Polym J 84:54–64. https://doi.org/10.1016/j.eurpolymj.2016.09.010

    Article  CAS  Google Scholar 

  5. Jian-Bo Q, Xu Y-L, Liu J-Y, Zeng J-B, Chen Y-L, Zhou W-Q, Liu J-G (2016) Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix. J Chromatogr A 1441:60–67

    Article  Google Scholar 

  6. Eggers S, Lauterbach F, Abetz V (2016) Synthesis and self-assembly of high molecular weight polystyrene-block-poly[2-(N-morpholino)ethyl methacrylate]: a story about microphase separation, amphiphilicity, and stimuli-responsivity. Polymer 107:357–367. https://doi.org/10.1016/j.polymer.2016.04.066

    Article  CAS  Google Scholar 

  7. Jiang J, Ma Y, Cui Z (2017) Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp 513:287–291. https://doi.org/10.1016/j.colsurfa.2016.10.056

    Article  CAS  Google Scholar 

  8. Deen GR (2012) Solution properties of water-soluble smart poly(N-acryloyl-N′-ethyl piperazine-co-methyl methacrylate). Polymer 4(4):32–45. https://doi.org/10.3390/polym4010032

    Article  CAS  Google Scholar 

  9. Xiao CS, Cheng YL, Zhang Y, Ding JX, He CL, Zhuang XL (2014) Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. J Polym Sci, Part A: PolymChem 52(5):671–679. https://doi.org/10.1002/pola.27048

    Article  CAS  Google Scholar 

  10. Luo C, Wenxin F, Li Z, Zhao B (2016) Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified l-alanine. Polymer 10:319–327

    Article  Google Scholar 

  11. Liu M, Hongliang D, Zhang W, Zhai G (2017) Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications. Mater Sci Eng, C 71:1267–1280. https://doi.org/10.1016/j.msec.2016.11.030

    Article  CAS  Google Scholar 

  12. Liang G, Kong T, Huo Y (2016) Dual thermoresponsive and pH-responsive poly(vinyl alcohol) derivatives: synthesis, Phase Transition Study, and Functional Applications. Macromolecules 49:7478–7489

    Article  Google Scholar 

  13. Patra S, Roy E, Karfa P, Kumar S, Madhuri R, Sharma PK (2015) Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl Mater Interfaces 7:9235–9246

    Article  CAS  Google Scholar 

  14. Bai Y, Zhang Z, Zhang A, Chen L, He C, Zhuang X, Chen X (2012) Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamicacid)-based microgels for oral insulin controlled release. Carbohydr Polym 89(4):1207–1121. https://doi.org/10.1016/j.carbpol.2012.03.095

    Article  CAS  Google Scholar 

  15. He M, Chu C-C (2013) Dual stimuli responsive glycidyl methacrylate chitosan-quaternary ammonium hybrid hydrogel and its bovine serum albumin release. J Appl Polym Sci 130:3736–3745

    Article  CAS  Google Scholar 

  16. Wei Q-B, Luo Y-L, Feng F, Zhang Y-Q, Ma R-X (2013) Synthesis, characterization, and swelling kinetics of ph-responsive and temperature-responsive carboxymethyl chitosan/polyacrylamide hydrogels. J Appl Polym Sci 129:806–814

    Article  CAS  Google Scholar 

  17. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171. https://doi.org/10.1016/j.addr.2013.04.016

    Article  CAS  Google Scholar 

  18. Lin M, Kang H, Liu R, Huang Y (2010) Smart assembly behaviors of hydroxypropylcellulose-graft-poly(4-vinylpyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26:18519–18525

    Article  Google Scholar 

  19. Carreira AS, Gonçalves FAMM, Mendonça PV, Gil MH, Coelho JFJ (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydr Polym 80(3):618–630. https://doi.org/10.1016/j.carbpol.2009.12.047

    Article  CAS  Google Scholar 

  20. Yuan W, Zou H, Shen J (2016) Amphiphilic graft copolymers with ethyl cellulose backbone: synthesis, self-assembly and tunable temperature–CO2 response. Carbohydr Polym 136:216–223. https://doi.org/10.1016/j.carbpol.2015.09.052

    Article  CAS  Google Scholar 

  21. Xu Y, Benzhi J, Zhang S (2014) Novel pH- and temperature-responsive polymer: tertiary amine starch ether. Carbohydr Polym 114:530–536

    Article  Google Scholar 

  22. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1(1):17–36. https://doi.org/10.1039/B9PY00216B

    Article  CAS  Google Scholar 

  23. Lee J, McGrath AJ, Hawker CJ, Kim B-S (2016) pH-tunable thermoresponsive PEO-based functional polymers with pendant amine groups. ACS Macro Lett 5:1391–1396

    Article  CAS  Google Scholar 

  24. Wang Y, Heinze T, Zhang K (2016) Stimuli-responsive nanoparticles from ionic cellulose derivatives. Nano 8:648–657

    CAS  Google Scholar 

  25. Jamróz-Piegza M, Utrata-Wesołek A, Trzebicka B, Dworak A (2006) Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. Eur Polym J 42(10):2497–2506. https://doi.org/10.1016/j.eurpolymj.2006.04.017

    Article  Google Scholar 

  26. Kuo C-Y, Don T-M, Hsu S-C, Lee C-F, Chiu W-Y, Huang C-Y (2016) Thermo- and pH-induced self-assembly of P(AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci Part A: Polym Chem 54:1109–1118

    Article  CAS  Google Scholar 

  27. Liu S, Armes SP (2003) Synthesis and aqueous solution behavior of pH-responsive schizophrenic diblock copolymer. Langmuir 19(10):4432–4438. https://doi.org/10.1021/la020951l

    Article  CAS  Google Scholar 

  28. Park HW, Jin H-S, Yang SY, Kim J-D (2009) Tunable phase transition behaviors of pH-sensitive polyaspartamides having various cationic pendant groups. Colloid Polym Sci 287(8):919–926. https://doi.org/10.1007/s00396-009-2046-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21376041, 21076033, 21536002), Fund for innovative research groups of the National Natural Science Fund Committee of Science (21421005), the Fundamental Research Funds for the Central Universites (No.DUT15ZD224, DUT2016TB12) and Open Fund of Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), State Ethnic Affairs Commission & Ministry of Education, China (KF2015004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanghyok Jong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, K., Ju, B., Xiu, J. et al. Temperature and pH dual responsive 2-(dimethylamino)ethanethiol modified starch derivatives via a thiol-yne reaction for drug delivery. Colloid Polym Sci 296, 627–636 (2018). https://doi.org/10.1007/s00396-018-4284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4284-0

Keywords

Navigation