Skip to main content
Log in

Effects of structure on the properties of low-molecular-weight superplasticizer using phosphonate as the adsorption group

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two types of low-molecular-weight superplasticizers using phosphonate as the adsorption group were synthesized in one pot by the Moedrizer-Irani procedure from the single amino-terminated or the double amino-terminated polyethers. Results of cement paste test indicated that single bis(phosphonic acid)amino-terminated polymers (polymer of type A) exhibited good water-reducing ability, while double bis(phosphonic acid)amino-terminated polymers (polymers of type B) showed good fluidity-maintaining abilities and had a longer setting time. Adsorption isotherms indicated that polyether chains of polymer of type B might curl up on the surface of cement particle or form a chelated structure with Ca2+ in aqueous phase, which restricted the effect of steric hindrance. And the adsorption layer thickness of polymer M1 was calculated as 0.46 nm through X-ray photoelectron spectroscopy test, while which of polymer M3 was 0.89 nm. Furthermore, cement hydration test and SEM were also used to reveal the effects of structure on the properties of the two different kinds of polymers. These useful information provide the potential to explore new kind of superplasticizers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ramachandran VS (1992) Superplasticizers. Prog Cem Concr 1:345–375

    CAS  Google Scholar 

  2. Hommer H (2009) Interaction of polycarboxylate ether with silica fume. J Eur Ceram Soc 29(10):1847–1853. https://doi.org/10.1016/j.jeurceramsoc.2008.12.017

    Article  CAS  Google Scholar 

  3. Li Y, Zhang Y, Zheng J, Guo H, Yang C, Li Z, Lu M (2014) Dispersion and rheological properties of concentrated kaolin suspensions with polycarboxylate copolymers bearing comb-like side chains. J Eur CeramSoc 34(1):137–146. https://doi.org/10.1016/j.jeurceramsoc.2013.07.009

    Article  CAS  Google Scholar 

  4. Dalas F, Nonat A, Pourchet S, Mosquet M, Rinaldi D, Sabio S (2015) Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cem Concr Res 67:21–30. https://doi.org/10.1016/j.cemconres.2014.07.024

    Article  CAS  Google Scholar 

  5. Rixom MR, Mailvaganam NP (1986) Chemical admixtures for concrete2nd edn. E and F. N, Spon

    Google Scholar 

  6. Yamada K, Takahashi T, Hanehara S, Matsuhisa M (2000) Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem Concr Res 30(2):197–207. https://doi.org/10.1016/S0008-8846(99)00230-6

    Article  CAS  Google Scholar 

  7. Liu X, Wang Z, Zhu J, Zheng Y, Cui S, Lan M, Li H (2014) Synthesis, characterization and performance of a polycarboxylate superplasticizer with amide structure. Colloids Surf A Physicochem Eng Asp 448:119–129. https://doi.org/10.1016/j.colsurfa.2014.02.022

    Article  CAS  Google Scholar 

  8. Ran QP, Wang XM, Jiang J, Yang Y Synthesis of block polycarboxylate copolymer and its application in a cement system. Adv Cem Res.2016, 28(3):202–208.https://doi.org/10.1680/jadcr.15.00055

  9. Kong FR, Pan LS, Wang CM, Zhang DL, Xu N (2016) Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste. Constr Build Mater 105:545–553. https://doi.org/10.1016/j.conbuildmat.2015.12.178

    Article  CAS  Google Scholar 

  10. Plank J, Pöllmann K, Zouaoui N, Andres PR, Schaefer C (2008) Synthesis and performance of methacrylic ester based polycarboxylate superplasticizers possessing hydroxy terminated poly(ethylene glycol) side chains. Cem Concr Res 38(10):1210–1216. https://doi.org/10.1016/j.cemconres.2008.01.007

    Article  CAS  Google Scholar 

  11. Yamada K, Takahashi T, Hanehara S, Matsuhisa M (2000) Effects of chemical struc-ture on the properties of polycarboxylate-type superplasticizer. Cem ConcrRes 30(2):197–207. https://doi.org/10.1016/S0008-8846(99)00230-6

    Article  CAS  Google Scholar 

  12. Shu X, Ran QP, Liu JP, Zhao HX, Zhang Q, Wang XM, Yang Y, Liu JZ (2016) Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste. Constr Build Mater 116:289–298. https://doi.org/10.1016/j.conbuildmat.2016.04.127

    Article  CAS  Google Scholar 

  13. Habbaba A, Plank J (2012) Surface chemistry of ground granulated blast furnace slagin cement pore solution and its impact on the effectiveness of polycarboxylate superplasticizers. J Am Ceram Soc 95(2):768–775. https://doi.org/10.1111/j.1551-2916.2011.04968.x

    Article  CAS  Google Scholar 

  14. Bonen D, Sakar SL (1995) The superplasticizer adsorption capacity of cement paste, pore solution composition, and parameters affecting flow loss. Cem Concr Res 25(7):1423–1434. https://doi.org/10.1016/0008-8846(95)00137-2

    Article  CAS  Google Scholar 

  15. Kukhar, VP, Hudson HR. (2000) Aminophosphonic and aminophosphinic acids: chemistry and biological activity. Eds.; Wiley: Chichester

  16. Poupot M, Griffe L, Marchand P et al (2006) Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J 13:2339–2351

    Article  Google Scholar 

  17. Matty JM, Tomson MB (1988) Effect of multiple precipitation inhibitors on calcium carbonate nucleation. Appl Geochem 3:549–556

    Article  CAS  Google Scholar 

  18. Fang JL, Li Y, Ye XR et al (1993) Passive films and corrosion protection due to phosphonic acid inhibitors. Corrosion (Houston, TX, U. S.) 49:266–271

    Article  CAS  Google Scholar 

  19. Qi L, Sehgal A, Castaing JC et al (2008) Redispersible hybrid nanopowders: cerium oxide nanoparticle complexes with phosphonated-PEG oligomers. ACS Nano 2:879–888

    Article  CAS  Google Scholar 

  20. Basly B, Felder-Flesch D, Perriat P et al (2010) Dendronized iron oxide nanoparticles as contrast agents for MRI. ChemCommun(Cambridge) 46:985–987

    CAS  Google Scholar 

  21. Kueny-Stotz M, Mamlouk-Chaouachi H, Felder-Flesch D (2011) Synthesis of patent blue derivatized hydrophilic dendrons dedicated to sentinel node detection in breast cancer. Tetrahedron Lett 52(22):2906–2909. https://doi.org/10.1016/j.tetlet.2011.03.144

    Article  CAS  Google Scholar 

  22. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H et al (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573

    Article  CAS  Google Scholar 

  23. Boyer C, Bulmus V, Priyanto P et al (2009) The stabilization and bio-functionalization of iron oxide nanoparticles using heterotelechelic polymers. J MaterChem 19:111–123

    CAS  Google Scholar 

  24. Daou TJ, Pourroy G, Greneche JM et al (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Trans:4442–4449

  25. Moedritzer K, Irani R (1966) The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Org Chem 31(5):1603–1607. https://doi.org/10.1021/jo01343a067

    Article  CAS  Google Scholar 

  26. Turrin CO, Hameau A, Caminade AM (2012) Application of the Kabachnik–Fields and Moedritzer–Irani procedures for the preparation of Bis(phosphonomethyl)amino-and bis[(dimethoxyphosphoryl) -methyl]amino-terminated poly(ethylene glycol). Synthesis 44(11):1628–1630. https://doi.org/10.1055/s-0031-1290985

    Article  CAS  Google Scholar 

  27. Fields EK (1952) The synthesis of esters of substituted amino phosphonic acids. J Am Chem Soc 74(6):1528–1531. https://doi.org/10.1021/ja01126a054

    Article  CAS  Google Scholar 

  28. Ran QP, Ma JF, Wang T, Zhao HX, Song FY, Fan SM, Yang Y, Lyu ZF, Liu JP (2016) Synthesis, characterization and dispersion properties of a series of bi(phosphonic acid)amino-terminated polymers. Colloid. Polym. Sci 294:189–198

    Article  CAS  Google Scholar 

  29. Ran QP, Song FY, Wang T, Fan SM, Ma JF, Yang Y, Liu JP Effect of the different hydrophobic groups of polycarboxylate superplasticizers on the properties in cement mortars. Polym Compos.2017,38(9):1783–1791. https://doi.org/10.1002/pc.23748

  30. Flatt RJ, Houst YF (2001) A simplified view on chemical effects perturbing the action of superplasticizers. Cem Concr Res 31(8):1169–1176. https://doi.org/10.1016/S0008-8846(01)00534-8

    Article  CAS  Google Scholar 

  31. Uchikawa H, Hanehara S, Sawaki D (1997) The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cem Concr Res 27:37–50

    Article  CAS  Google Scholar 

  32. Zingg A, Winnefeld F, Holzer L, Pakusch J, Becker S, Figi R, Gauckler L (2009) Interaction of polycarboxylate-based superplasticizers with cements containing different C(3)A amounts. Cem Concr Compos 31(3):153–162. https://doi.org/10.1016/j.cemconcomp.2009.01.005

    Article  CAS  Google Scholar 

  33. Flatt RJ, Schober I, Raphael E, Plassard C, Lesniewska E (2009) Conformation of adsorbed comb copolymer dispersants. Langmuir 25(2):845–855. https://doi.org/10.1021/la801410e

    Article  CAS  Google Scholar 

  34. Zhang Y, Kong X (2015) Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem Concr Res 69:1–9. https://doi.org/10.1016/j.cemconres.2014.11.009

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Key Research and Development Program of China (2017YFB0310102), the National Natural Science Foundation of China (Grant No. 51278232, 51408274, 21705067), and the Natural Science Foundation of Jiangsu Province of China (BK20160105) for the financial support, as well as the Natural Science Foundation of Shandong Province of China (ZR2017PB013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianping Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 136 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wang, T., Qi, S. et al. Effects of structure on the properties of low-molecular-weight superplasticizer using phosphonate as the adsorption group. Colloid Polym Sci 296, 503–514 (2018). https://doi.org/10.1007/s00396-018-4272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4272-4

Keywords

Navigation