Skip to main content
Log in

Preparation of hexagon bowl-like cross-linked polymer microspheres with ordered array and same orientation through direct pyrolysis of soft-core/hard-shell PS particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, using the soft-core/hard-shell polystyrene–divinylbenzene microspheres prepared by soap-free emulsion polymerization as building blocks, hexagon bowl-like polymer microspheres (BLPM) with ordered array and same orientation were successfully prepared through direct pyrolysis. The rim thickness and the morphology of the BLPM could be adjusted through changing the content of a cross-linking agent or the calcination conditions such as temperature, time, and heating rate. Besides, extrusion between microspheres also plays an important role on the cavity size and the hexagonal structure. The morphology of BLPM was characterized by SEM and TEM. FT-IR, EDS, and differential scanning calorimetry–thermogravimetric were also used to analyze the mechanism. Due to these, cross-linked BLPM have some special properties such as high thermal stability, solvent resistance, narrow size distribution, and ordered array, which will broaden their applications in many areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nagao D, Ohta T, Ishii H, Imhof A, Konno M (2012) Novel mini-reactor of silicone oil droplets for synthesis of morphology-controlled polymer particles. Langmuir 28(51):17642–17646

    Article  CAS  Google Scholar 

  2. Ahmad H, Hasan MK, Miah MAJ, Ali AMI, Tauer K (2011) Solvent effect on the emulsion copolymerization of methyl methacrylate and lauryl methacrylate in aqueous media. Polymer 52(18):3925–3932

    Article  CAS  Google Scholar 

  3. Xiao MY, Xia GJ, Wang R, Xie DQ (2012) Controlling the self-assembly pathways of amphiphilic block copolymers into vesicles. Soft Matter 8(30):7865–7874

    Article  CAS  Google Scholar 

  4. Skrabalak SE, Suslick KS (2007) Carbon powders prepared by ultrasonic spray pyrolysis of substituted alkali benzoates. J Phys Chem C 111(48):17807–17811

    Article  CAS  Google Scholar 

  5. Deng W, Wang MY, Chen G, Kan CY (2010) Morphological evolution of multistage polymer particles in the alkali post-treatment. Eur Polym J 46(6):1210–1215

    Article  CAS  Google Scholar 

  6. Wang Z, Qian XF, Yin J, Zhu ZK (2004) Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 20(8):3441–3448

    Article  CAS  Google Scholar 

  7. Shen J, Xu J, Hu Y, Li JP, Kan CY (2017) Fabrication of amino-containing hollow polymer latex and its composite with inorganic nanoparticles. Colloid Polym Sci 295:679–688

    Article  CAS  Google Scholar 

  8. Guan BY, Yu L, Lou XW (2016) Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J Am Chem Soc 138:11306–11311

    Article  CAS  Google Scholar 

  9. Guan G, Zhang Z, Wang Z, Liu B, Gao D, Xie C (2007) Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species. Adv Mater 19(17):2370–2374

    Article  CAS  Google Scholar 

  10. Ian DH, Liddell CM (2007) Convectively assembled nonspherical mushroom cap-based colloidal crystals. Langmuir 23(17):8810–8814

    Article  Google Scholar 

  11. Li HW, Yu HJ, Zhang XF, Guo GN, Hu JH, Dong AG, Yang D (2016) Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem Mater 28:1179–1186

    Article  CAS  Google Scholar 

  12. Lin ZX, Tian H, Xu FG, Yang XW, Mai YY, Feng XL (2016) Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer “kippah vesicles” for high performance supercapacitors. Polym Chem 7:2092–2098

    Article  CAS  Google Scholar 

  13. Sang HI, Unyong J, Xia YN (2005) Polymer hollow particles with controllable holes in their surfaces. Nat Mater 4(9):671–675

    Article  Google Scholar 

  14. Lisa MC, Harald DH, Hitchcock AP (2005) Composite tectocapsules containing porous polymer microspheres as release gates. Macromolecules 38(7):2903–2910

    Article  Google Scholar 

  15. Chen S, Yen Y, Chen Y, Hsu C, Chueh Y, Chen L (2012) Large scale two-dimensional nanobowl array high efficiency polymer solar cell. RSC Adv 2(4):1314–1317

    Article  CAS  Google Scholar 

  16. Yu J, Geng C, Zeng Y, Yan Q, Wang X, Shen D (2012) Confined self-assembly of asymmetric diblock copolymers within silica nanobowl arrays. ACS Macro Lett 1(1):62–66

    Article  CAS  Google Scholar 

  17. Zheng R, Liu G (2007) Water-dispersible oil-filled abc triblock copolymer vesicles and nanocapsules. Macromolecules 40(14):5116–5121

    Article  CAS  Google Scholar 

  18. Yang Z, Wang X, Yang Y, Liao Y, Wei Y, Xie X (2010) Synthesis of electroactive tetraaniline-PEO-tetraaniline triblock copolymer and its self-assembled vesicle with acidity response. Langmuir 26(12):9386–9392

    Article  CAS  Google Scholar 

  19. Chen Y, Liang F, Yang H, Zhang C, Wang Q, Qu X, Li J, Cai Y, Qiu D, Yang Z (2012) Janus nanosheets of polymer–inorganic layered composites. Macromolecules 45(3):1460–1467

    Article  CAS  Google Scholar 

  20. Xue M, Xiao W, Zhang Z (2008) Porous films from transformation of polymeric sphere arrays. Adv Mater 20(3):439–442

    Article  CAS  Google Scholar 

  21. Liu G, Zhang H, Yang X, Wang Y (2009) Facile synthesis of functional silica/polymer composite materials and hydrophilic hollow polymer microspheres. J Appl Polym Sci 111(4):1964–1975

    Article  CAS  Google Scholar 

  22. Li GL, Xu LQ, Tang X, Neoh KG, Kang ET (2010) Hairy hollow microspheres of fluorescent shell and temperature-responsive brushes via combined distillation-precipitation polymerization and thiol−ene click chemistry. Macromolecules 43(13):5797–5803

    Article  CAS  Google Scholar 

  23. Liu XY, Kim JS, Wu J, Eisenberg A (2005) Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid). Macromolecules 38(16):6749–6751

    Article  CAS  Google Scholar 

  24. Berezkin AV, Kudryavtsev YV (2013) End-coupling reactions in incompatible polymer blends: from droplets to complex micelles through interfacial instability. Macromolecules 46(12):5080–5089

    Article  CAS  Google Scholar 

  25. Ding T, Song K, Yang G, Tung CH (2012) Tunable fabrication of two-dimensional arrays of polymer nanobowls for biomimic growth of amorphous calcium carbonate. Macromol Rapid Commun 33(18):1562–1567

    Article  CAS  Google Scholar 

  26. Carmen IZ, Cornelis AVW, Imhof A (2006) Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir 22(9):4343–4352

    Article  Google Scholar 

  27. Zhang HJ, Ye F, Xu HF, Liu LM, Guo HF (2010) Synthesis of carbon hollow particles by a simple inverse-emulsion method. Mater Lett 64(13):1473–1475

    Article  CAS  Google Scholar 

  28. Jin Q, Zheng MT, Wu YJ, Xie CL, Xiao Y, Liu YL (2011) Simple morphology-controlled synthesis of hollow carbonaceous particles. J Mater Sci 46(23):7639–7642

    Article  CAS  Google Scholar 

  29. Liu B, Zhang C, Liu J, Qu X, Yang Z (2009) Janus non-spherical colloids by asymmetric wet-etching. Chem Commun 26:3871–3873

    Article  Google Scholar 

  30. Ge X, Wang M, Yuan Q, Wang H, Ge X (2009) The morphological control of anisotropic polystyrene/silica hybrid particles prepared by radiation miniemulsion polymerization. Chem Commun 19:2765–2767

    Article  Google Scholar 

  31. Weisi Y, Yates MZ (2008) Effect of interfacial free energy on the formation of polymer microcapsules by emulsification/freeze-drying. Langmuir 24(3):701–708

    Article  Google Scholar 

  32. Wang Y, Guo BH, Wan X, Xu J, Wang X, Zhang YP (2009) Janus-like polymer particles prepared via internal phase separation from emulsified polymer/oil droplets. Polymer 50(14):3361–3369

    Article  CAS  Google Scholar 

  33. Chen J, Chao D, Lu X, Zhang W, Manohar SK (2006) General synthesis of two-dimensional patterned conducting polymer-nanobowl sheet via chemical polymerization. Macromol Rapid Commun 27(10):771–775

    Article  CAS  Google Scholar 

  34. Meng X, Zhang X, Ye L, Qiu D (2014) Fabrication of large-sized two-dimensional ordered surface array with well-controlled structure via colloidal particle lithography. Langmuir 30(23):7024–7029

    Article  CAS  Google Scholar 

  35. Omer-Mizrahi M, Margel S (2007) Synthesis and characterization of spherical and hemispherical polyepoxide micrometer-sized particles of narrow size distribution by a single-step swelling of uniform polystyrene template microspheres with glycidyl methacrylate. J Polym Sci Polym Chem 45(20):4612–4622

    Article  CAS  Google Scholar 

  36. Tanaka T, Komatsu Y, Fujibayashi T, Minami H, Okubo M (2010) A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles. Langmuir 26(6):3848–3853

    Article  CAS  Google Scholar 

  37. Yang Q, Chen J, Wang L, Xu Q, He L (2011) Morphology control and 2D self-assembly of poly(styrene-co-divinylbenzene) capsules. J Colloid Interface Sci 358(2):437–443

    Article  CAS  Google Scholar 

  38. Chen J, Lang Z, Xu Q, Hu B, Fu J, Chen Z, Zhang J (2013) Facile preparation of monodisperse carbon spheres: template-free construction and their hydrogen storage properties. ACS Sustain Chem Eng 1(8):1063–1068

    Article  CAS  Google Scholar 

  39. Jeffery DP, Sergey V, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784

    Article  Google Scholar 

  40. Zhu XS, Elomaa M, Sundholm F, Èller CHL (1998) Infrared and thermogravimetric studies of thermal degradation of polystyrene in the presence of ammonium sulfate. Polym Degrad Stab 62:487–494

    Article  CAS  Google Scholar 

  41. Ebert KH, Ederer HJ, Schroeder UKO, Hamielec AW (1982) On the kinetics and mechanism of thermal degradation of polystyrene. Macromol Chem Phys 183(5):1207–1218

    Article  CAS  Google Scholar 

  42. Flynn JH (2002) Polymer degradation: handbook of thermal analysis and calorimetry. Elsevier Science, Amsterdam,

    Book  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51473149, 20804040, 21571157, 51003098, 21101141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimin Chen or Qun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 11084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Cao, J., Fang, M. et al. Preparation of hexagon bowl-like cross-linked polymer microspheres with ordered array and same orientation through direct pyrolysis of soft-core/hard-shell PS particles. Colloid Polym Sci 295, 2151–2161 (2017). https://doi.org/10.1007/s00396-017-4187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4187-5

Keywords

Navigation