Skip to main content

Advertisement

Log in

The reinforcing and characteristics of interphase as the polymer chains adsorbed on the nanoparticles in polymer nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the adsorbed polymer chains on the nanoparticle surface are assumed as an interphase layer, which increases the reinforcing efficiency of nanoparticles in polymer nanocomposites. The interphase is taken into account to enhance the effective volume fraction of nanoparticles, which is determined by the Maxwell model for Young’s modulus of composites. Also, the modulus and strength of interphase are calculated by proper models. The interphase properties are estimated and discussed for various samples containing different nanoparticles. The present methodology gives fine agreement between the experimental results of mechanical properties and the calculations. Also, the acceptable results for interphase properties are obtained which confirm the validity of the presented models. The small nanoparticles and thick interphase significantly increase the nanocomposite reinforcement. Additionally, Young’s modulus of nanoparticles causes negligible effect on the modulus of nanocomposites in spite of the interphase properties such as thickness and interfacial area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mallakpour S, Javadpour M (2015) Design and characterization of novel poly (vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid Colloid Polym Sci 293(9):2565–2573

    Article  CAS  Google Scholar 

  2. Mostafa NY, Mohamed MB, Imam N, Alhamyani M, Heiba ZK (2016) Electrical and optical properties of hydrogen titanate nanotube/PANI hybrid nanocomposites. Colloid Polym Sci 294(1):215–224

  3. Park JH, Karim MR, Kim IK, Cheong IW, Kim JW, Bae DG, et al. (2010) Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications Colloid Polym Sci 288(1):115–121

    Article  CAS  Google Scholar 

  4. Toiserkani H (2015) Fabrication and characterization of poly (benzimidazole-amide)/functionalized titania nanocomposites containing phthalimide and benzimidazole pendent groups Colloid Polym Sci 293(10):2911–2920

    Article  CAS  Google Scholar 

  5. Sehgal P, Narula AK (2015) Structural, morphological, optical, and electrical transport studies of poly (3-methoxythiophene)/NiO hybrid nanocomposites Colloid Polym Sci 293(9):2689–2699

    Article  CAS  Google Scholar 

  6. Norouzi M, Zare Y, Kiany P (2015) Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization. Polym Rev 55:531–560

  7. Zare Y (2015) New models for yield strength of polymer/clay nanocomposites Compos Part B 73:111–117

    Article  CAS  Google Scholar 

  8. Zare Y (2015) A simple technique for determination of interphase properties in polymer nanocomposites reinforced with spherical nanoparticles Polymer 72:93–97

    Article  CAS  Google Scholar 

  9. Pourhossaini M-R, Razzaghi-Kashani M (2014) Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites Polymer 55(9):2279–2284

    Article  CAS  Google Scholar 

  10. Fornes T, Hunter D, Paul D (2004) Effect of sodium montmorillonite source on nylon 6/clay nanocomposites Polymer 45(7):2321–2331

    Article  CAS  Google Scholar 

  11. Zare Y (2016) Development of Nicolais–Narkis model for yield strength of polymer nanocomposites reinforced with spherical nanoparticles Int J Adhes Adhes 70:191–195

    Article  CAS  Google Scholar 

  12. Zare Y (2016) Modeling approach for tensile strength of interphase layers in polymer nanocomposites J Colloid Interface Sci 471:89–93

    Article  CAS  Google Scholar 

  13. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet Science 314(5802):1107–1110

    Article  CAS  Google Scholar 

  14. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, et al. (2006) General strategies for nanoparticle dispersion Science 311(5768):1740–1743

    Article  CAS  Google Scholar 

  15. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, et al. (2008) Functionalized graphene sheets for polymer nanocomposites Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  16. Zare Y (2016) “a” interfacial parameter in Nicolais–Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties J Colloid Interface Sci 470:245–249

    Article  CAS  Google Scholar 

  17. Zare Y (2016) Effects of imperfect interfacial adhesion between polymer and nanoparticles on the tensile modulus of clay/polymer nanocomposites Appl Clay Sci 129:65–70

    Article  CAS  Google Scholar 

  18. Zare Y (2017) An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/clay nanocomposites J Colloid Interface Sci 486:249–254

    Article  CAS  Google Scholar 

  19. Zare Y (2016) A two-step method based on micromechanical models to predict the Young’s modulus of polymer nanocomposites Macromol Mater Eng 301:846–852

    Article  CAS  Google Scholar 

  20. Zare Y, Rhee KY (2017) The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions Compos Sci Technol 144:18–25

    Article  CAS  Google Scholar 

  21. Zare Y (2015) Assumption of interphase properties in classical Christensen–Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles RSC Adv 5(116):95532–95538

    Article  CAS  Google Scholar 

  22. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites J Mater Chem 22(8):3637–3646

    Article  CAS  Google Scholar 

  23. Ohama Y (1987) Principle of latex modification and some typical properties of latex-modified mortars and concretes adhesion; binders (materials); bond (paste to aggregate); carbonation; chlorides; curing; diffusion ACI Mater J 84(6):511–518

    CAS  Google Scholar 

  24. Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites Polym Eng Sci 42(5):983–993

    Article  CAS  Google Scholar 

  25. Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites Composites 21(3):255–262

    Article  CAS  Google Scholar 

  26. Lazzeri A, Phuong VT (2014) Dependence of the Pukánszky’s interaction parameter B on the interface shear strength (IFSS) of nanofiller-and short fiber-reinforced polymer composites Compos Sci Technol 93:106–113

    Article  CAS  Google Scholar 

  27. Szazdi L, Pozsgay A, Pukanszky B (2007) Factors and processes influencing the reinforcing effect of layered silicates in polymer nanocomposites Eur Polym J 43(2):345–359

    Article  CAS  Google Scholar 

  28. Montazeri A, Naghdabadi R (2010) Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling J Appl Polym Sci 117(1):361–367

    CAS  Google Scholar 

  29. Joshi P, Upadhyay S (2014) Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite Comput Mater Sci 87:267–273

    Article  CAS  Google Scholar 

  30. Zare Y (2016) The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology Compos A: Appl Sci Manuf 91:127–132

    Article  CAS  Google Scholar 

  31. Zare Y, Rhee KY, Hui D (2017) Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites Compos Part B 122:41–46

    Article  CAS  Google Scholar 

  32. Hm C, Chen J, Ln S, Yang J, Huang T, Zhang N, et al. (2013) Comparative study of poly (L-lactide) nanocomposites with organic montmorillonite and carbon nanotubes J Polym Sci B Polym Phys 51(3):183–196

    Article  Google Scholar 

  33. Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts Appl Clay Sci 85:109–115

    Article  Google Scholar 

  34. Chang YW, Kim S, Kyung Y (2005) Poly (butylene terephthalate)–clay nanocomposites prepared by melt intercalation: morphology and thermomechanical properties Polym Int 54(2):348–353

    Article  CAS  Google Scholar 

  35. Yeh M-K, Hsieh T-H, Tai N-H (2008) Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites Mater Sci Eng A 483:289–292

    Article  Google Scholar 

  36. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites Compos Sci Technol 62(10):1327–1340

    Article  CAS  Google Scholar 

  37. Chen H, Wang M, Lin Y, Chan CM, Wu J (2007) Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCo3 particles J Appl Polym Sci 106(5):3409–3416

    Article  CAS  Google Scholar 

  38. Nesterov A, Lipatov Y (1999) Compatibilizing effect of a filler in binary polymer mixtures Polymer 40(5):1347–1349

    Article  CAS  Google Scholar 

  39. Ishak ZM, Chow W, Takeichi T (2008) Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene nanocomposites Compos A: Appl Sci Manuf 39(12):1802–1814

    Article  Google Scholar 

  40. Zare Y (2016) Study on interfacial properties in polymer blend ternary nanocomposites: role of nanofiller content Comput Mater Sci 111:334–338

    Article  CAS  Google Scholar 

  41. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing Eur Polym J 41(9):1965–1978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nafiseh Nikfar or Yasser Zare.

Ethics declarations

Funding

No financial funding.

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikfar, N., Esfandiar, M., Shahnazari, M.R. et al. The reinforcing and characteristics of interphase as the polymer chains adsorbed on the nanoparticles in polymer nanocomposites. Colloid Polym Sci 295, 2001–2010 (2017). https://doi.org/10.1007/s00396-017-4164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4164-z

Keywords

Navigation