Skip to main content
Log in

Evaluation in concentration of surface amino groups upon doped and dedoped Fe3O4/PANI nanocomposites through conjugation with p-hydroxybenzaldehyde

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An in situ chemical oxidation polymerization approach in combination with dedoping treatment was employed for preparing Fe3O4/polyaniline (Fe3O4/PANI) and dedoped Fe3O4/PANI nanocomposites. The two magnetic nanocomposites were featured with relatively high-saturation magnetization, superparamagnetism, and a multicore–shell structure. Both S and Cl species can be doped into PANI shell. The doping level of Fe3O4/PANI nanocomposite was estimated to be 30.9% through X-ray photoelectron spectroscopy. After dedoping treatment, about 95% S and 40% Cl can be removed from PANI shell. More significantly, a spectroscopic method has been developed for estimating the concentration of amino groups on surface of PANI-coated nanocomposites through nucleophilic addition between amino and p-hydroxybenzaldehyde. The concentration of surface amino groups was estimated to be ca. 357.1 and 554.5 μmol g−1, corresponding to the doped and dedoped magnetic nanocomposites, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Wu W, Jiang C, Roy VAL (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts Nano 7:38–58

    CAS  Google Scholar 

  2. Yang F, Zhang X, Song L, Cui H, Myes JN, Bai T, Zhou Y, Chen Z, Gu N (2015) Controlled drug release and hydrolysis mechanism of polymer–magnetic nanoparticle composite ACS Appl Mater Interfaces 7:9410–9419

    Article  CAS  Google Scholar 

  3. Wang J, Zhou H, Zhuang J, Liu Q (2015) Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers Phys Chem Chem Phys 17:3802–3812

    Article  CAS  Google Scholar 

  4. Zhu M, Zhang W, Li Y, Gai L, Zhou J, Ma W (2016) Multishell structured magnetic nanocomposites carrying a copolymer of pyrrole–thiophene for highly selective Au(III) recovery J Mater Chem A 4:19060–19069

    Article  CAS  Google Scholar 

  5. Shahrousvand M, Hoseinian MS, Ghollasi M, Karbalaeimahdi A, Salimi A, Tabar FA (2017) Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: properties and cell behavior Mater Sci Eng C 74:556–567

    Article  CAS  Google Scholar 

  6. Roy P, Srivastava SK (2015) Nanostructured anode materials for lithium ion batteries J Mater Chem A 3:2454–2484

    Article  CAS  Google Scholar 

  7. Jiang H, Zhao L, Gai L, Wang Y, Hou Y, Liu H (2015) Conjugation of methotrexate onto dedoped Fe3O4/PPy nanospheres to produce magnetic targeting drug with controlled drug release and targeting specificity for HeLa cells Synth Met 207:18–25

    Article  CAS  Google Scholar 

  8. Rana S, Jadhav NV, Barick KC, Pandey BN, Hassan PA (2014) Polyaniline shell cross-linked Fe3O4 magnetic nanoparticles for heat activated killing of cancer cells Dalton Trans 31:12263–12271

    Article  Google Scholar 

  9. Piao SH, Bhaumik M, Maity A, Choi HJ (2015) Polyaniline/Fe composite nanofiber added soft magnetic carbonyl iron microsphere suspension and its magnetorheology J Mater Chem C 3:1861–1868

    Article  CAS  Google Scholar 

  10. Zhao J, Lin J, Xiao J, Fan H (2015) Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites RSC Adv 5:19345–19352

    Article  CAS  Google Scholar 

  11. Wang Y, Gai L, Ma W, Jiang H, Peng X, Zhao L (2015) Ultrasound-assisted catalytic degradation of methyl orange with Fe3O4/polyaniline in near neutral solution Ind Eng Chem Res 54:2279–2289

    Article  CAS  Google Scholar 

  12. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering Acta Biomater 10:2341–2353

    Article  CAS  Google Scholar 

  13. Peng X, Zhang W, Gai L, Jiang H, Wang Y, Zhao L (2015) Dedoped Fe3O4/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution Chem Eng J 280:197–205

    Article  CAS  Google Scholar 

  14. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications RSC Adv 5:37553–37567

    Article  CAS  Google Scholar 

  15. Dominis AJ, Spinks GM, Kane-Maguire LAP, Wallace GG (2002) A de-doping/re-doping study of organic soluble polyaniline Synth Met 129:165–172

    Article  CAS  Google Scholar 

  16. Tyllianakis PE, Kakabakos S, Evangelatos GP, Ithakissios DS (1993) Colorimetric determination of reactive primary amino groups of macro- and microsolid supports Appl Biochem Biotechnol 38:15–25

    Article  CAS  Google Scholar 

  17. Mori T, Kubo T, Kaya K, Hosoya K (2009) Quantitative evaluations of surface-concentrated amino groups on monolithic-type solid supports prepared by copolymerization method Colloid Polym Sci 287:513–523

    Article  CAS  Google Scholar 

  18. Gai L, Han X, Hou Y, Chen J, Jiang H, Chen X (2013) Surfactant-free synthesis of Fe3O4@PPy and Fe3O4@PPy microspheres as adsorbents for isolation of PCR-ready DNA Dalton Trans 42:1820–1826

    Article  CAS  Google Scholar 

  19. Zhang H, Wang D (2008) Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion Angew Chem Int Ed 47:3984–3987

    Article  CAS  Google Scholar 

  20. Schnitzler DC, Meruvia MS, Hummelgen IA, Zarbin AJG (2003) Preparation and characterization of novel hybrid materials formed from (Ti,Sn)O2 nanoparticles and polyaniline Chem Mater 15:4658–4665

    Article  CAS  Google Scholar 

  21. Gai L, Du G, Zuo Z, Wang Y, Liu D, Liu H (2009) Controlled synthesis of hydrogen titanate–polyaniline composite nanowires and their resistance–temperature characteristics J Phys Chem C 113:7610–7615

    Article  CAS  Google Scholar 

  22. Stejskal J, Trchová M, Prokeš J, Sapurina I (2001) Brominated polyaniline Chem Mater 13:4083–4086

    Article  CAS  Google Scholar 

  23. Trchová M, Šeděnková I, Tobolková E, Stejskal J (2004) FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films Polym Degrad Stabil 86:179–185

    Article  Google Scholar 

  24. Quillard S, Louarn G, Buisson JP, Boyer M, Lapkowski M, Pron A, Lefrant S (1997) Vibrational spectroscopic studies of the isotope effects in polyaniline Synth Met 84:805–806

    Article  CAS  Google Scholar 

  25. Ping Z (1996) In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline J Chem Soc Faraday Trans 92:3063–3067

    Article  CAS  Google Scholar 

  26. Epstein AJ, Ginder JM, Zuo F, Bigelow RW, Woo HS, Tanner DB, Richter AF, Huang WS, MacDiarmid AG (1987) Insulator-to-metal transition in polyaniline Synth Met 18:303–309

    Article  CAS  Google Scholar 

  27. Soeya S, Hayakawa J, Takahashi H, Ito K, Yamamoto C, Kida A, Asano H, Matsui M (2002) Development of half-metallic ultrathin Fe3O4 films for spin-transport devices Appl Phys Lett 80:823–825

    Article  CAS  Google Scholar 

  28. Ruangchuay L, Schwank J, Sirivat A (2002) Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization Appl Surf Sci 119:128–137

    Article  Google Scholar 

  29. Sodhi RNS, Grad HA, Smith DC (1992) Examination by X-ray photoelectron spectroscopy of the adsorption of chlorhexidine on hydroxyapatite J Dent Res 71:1493–1497

    Article  CAS  Google Scholar 

  30. Tan KL, Tan BTG, Kang ET, Neoh KG (1989) X-ray photoelectron spectroscopy studies of the chemical structure of polyaniline Phys Rev B 39:8070–8073

    Article  CAS  Google Scholar 

  31. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures Polym Int 57:1295–1325

    Article  CAS  Google Scholar 

  32. Yue J, Epstein AJ (1991) XPS study of self-doped conducting polyaniline and parent systems Macromolecules 24:4441–4445

    Article  CAS  Google Scholar 

  33. Zeng XR, Ko TM (1998) Structures and properties of chemically reduced polyanilines Polymer 39:1187–1195

    Article  CAS  Google Scholar 

  34. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering Tissue Eng Part A 15:3605–3619

    Article  CAS  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Jaramillo J, Álvarez PM, Gómez-Serrano V (2010) Oxidation of activated carbon by dry and wet methods: surface chemistry and textural modifications Fuel Process Technol 91:1768–1775

    Article  CAS  Google Scholar 

  37. Basavaraja C, Kim WJ, Thinh PX, Huh DS (2012) Electrical and magnetic properties of polyaniline-2-naphthalene sulfonic acid/gold nanoparticle-reduced graphite oxide composites Mater Lett 77:41–44

    Article  CAS  Google Scholar 

  38. Mandel K, Hutter F, Gellermann C, Sextl G (2012) Modified superparamagnetic nanocomposite microparticles for highly selective HgII or CuII separation and recovery from aqueous solutions ACS Appl Mater Interfaces 4:5633–5642

    Article  CAS  Google Scholar 

  39. Niu D, Li Y, Ma Z, Diao H, Gu J, Chen H, Zhao W, Ruan M, Zhang Y, Shi J (2010) Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes Adv Funct Mater 20:773–780

    Article  CAS  Google Scholar 

  40. Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties ACS Nano 2:847–856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China under Grant No. 51272143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Gai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, N., Tian, Y. & Gai, L. Evaluation in concentration of surface amino groups upon doped and dedoped Fe3O4/PANI nanocomposites through conjugation with p-hydroxybenzaldehyde. Colloid Polym Sci 295, 1527–1534 (2017). https://doi.org/10.1007/s00396-017-4134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4134-5

Keywords

Navigation