Skip to main content
Log in

Remazol red dye removal using poly(acrylamide-co-acrylic acid) hydrogels and water absorbency studies

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Acrylamide (AAm) and acrylic acid (AAc) were copolymerized in aqueous solution using 2,2-azobis(2-amidinopropane) hydrochloride (V-50) as initiator and N,N′-methylenebisacrylamide (NMBAM) as cross-linking agent to obtain high swelling hydrogels. The effects of AAm/AAc ratio and the amount of cross-linking agent on the swelling properties were studied. It was observed that swelling characteristics of hydrogels are highly affected by the presence of carboxylic groups of AAc units in the hydrogels and by the cross-linking amount in the polymer chains. Hydrogel with 70/30 ratio of AAm/AAc showed the highest swelling degree, until 69.2 g of water/g of dried hydrogel, which represents approximately 7000% of swelling. Swelling kinetic was well represented by a second-order kinetic model for all the AAm/AAc compositions with maximum weight swelling ratio between 20.4 and 82.6 g/g for the hydrogels synthesized using 1% of NMBAM. Diffusion behavior analyses determined that water diffusion into hydrogels followed the anomalous Fickian behavior. The as synthesized hydrogels were used in the removal of Remazol Red 3BS (RR3BS) dye from aqueous solutions, finding that the maximum dye adsorption capacity for an equilibrium aqueous concentration of 130 mg/L of RR3BS was 44.19 mg of RR3BS/g of dried hydrogel with 1% of NMBAM, with an adsorption mechanism well represented by the Langmuir model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xue W, Champ S, Huglin MB (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 42:3665–3669. doi:10.1016/S0032-3861(00)00627-3

    Article  CAS  Google Scholar 

  2. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterial 23:4307–4314. doi:10.1016/S0142-9612(02)00175-8

    Article  CAS  Google Scholar 

  3. Liu MZ, Liang R, Zhan FL, Liu Z, Niu AZ (2006) Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polym Adv Technol 47:430–438. doi:10.1002/pat.720

    Article  Google Scholar 

  4. Ali AE, Shawky HA, Abd El Rehim HA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344. doi:10.1016/S0014-3057(03)00150-2

    Article  Google Scholar 

  5. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. doi:10.1016/S0939-6411(00)00090-4

    Article  CAS  Google Scholar 

  6. Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. doi:10.1016/j.biomaterials.2007.07.044

    Article  CAS  Google Scholar 

  7. Lutolf MP (2009) Biomaterials: spotlight on hydrogels. Nat Mater 8:451–453. doi:10.1038/nmat2458

    Article  CAS  Google Scholar 

  8. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. AM J Polym Sci 4:25–31. doi:10.5923/j.ajps.20140402.01

    CAS  Google Scholar 

  9. Alemzadeh I, Vossoughi M (2002) Controlled release of paraquat from poly vinyl alcohol hydrogel. Chem Eng Process 41:707–710. doi:10.1016/S0255-2701(01)00190-8

    Article  CAS  Google Scholar 

  10. Minhas M, Ahmad M, Ali L, Sohail M (2013) Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. J Pharm Sci 21:1–9. doi:10.1186/2008-2231-21-44

    Google Scholar 

  11. Allen SJ, Koumanova B (2005) Decolourisation of water/wastewater using adsorption (review). J U Chem Tech Metal 40:175–192

    CAS  Google Scholar 

  12. Khare SK, Panday KK, Srivastava RM, Singh VN (1987) Removal of victoria blue from aqueous solution by fly ash. J Chem Tech Biotechnol 38:99–104. doi:10.1002/jctb.280380206

    Article  CAS  Google Scholar 

  13. Karadag E, Saraydin D, Güven O (1996) Interaction of some cationic dyes with acrylamide/itaconic acid hydrogels. J Appl Polym Sci 61:2367–2372. doi:10.1002/(SICI)1097-4628(19960926)61:13<2367::AID-PP16>3.0.CO;2-1

    Article  CAS  Google Scholar 

  14. Rodriguez J, Rodrigo MA, Panizza M, Cerisola G (2009) Electrochemical oxidation of acid yellow 1 using diamond anode. J Appl Electrochem 39:2285–2289. doi:10.1007/s10800-009-9880-8

    Article  CAS  Google Scholar 

  15. Karadag E, Saraydin D, Güven O (1996) A study on the adsorption of some cationic dyes onto acrylamide/itaconic acid hydrogels. Polym Bull 36:745–752. doi:10.1007/BF00338639

    CAS  Google Scholar 

  16. Saraydin D, Karadag E, Güven O (1996) Adsorption of some basic dyes by acrylamide-maleic acid hydrogels. Separation Sci Technol 31:423–434. doi:10.1080/01496399608000705

    Article  CAS  Google Scholar 

  17. Saraydin D, Karadag E, Güven O (1996) Behaviors of acrylamide/maleic acid hydrogels in uptake of some cationic dyes from aqueous solutions. Separation Sci Technol 31:2359–2371. doi:10.1080/01496399608001053

    Article  CAS  Google Scholar 

  18. Saraydin D, Karadag E, Güven O (2001) Use of superswelling acrylamide/maleic acid hydrogels for monovalent cationic dye adsorption. Appl Polym Sci J 79:1809–1815. doi:10.1002/1097-4628(20010307)79:10<1809::AID-PP90>3.0.CO;2-L

    Article  CAS  Google Scholar 

  19. Duran S, Solpan D, Güven O (1999) Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes. Nucl Instr Meth B 151:196–199. doi:10.1016/S0168-583X(99)00151-2

    Article  CAS  Google Scholar 

  20. Karadag E, Baris U, Saraydin D (2002) Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur Polym J 38:2133–2141. doi:10.1016/S0014-3057(02)00117-9

    Article  CAS  Google Scholar 

  21. Rojas de Gáscue B, Ramírez M, Prin JL, Torres C, Bejarano L, Villarroel H, Rojas L, Murillo M, Katime I (2010) Hidrogeles de acrilamida/ácido acrilico y de acrilamida/poli(ácido acrilico): estudio de su capacidad de remediación en efluentes industriales. Rev Latinam Metal Mater 30:28–39

    Google Scholar 

  22. Peniche C, Cohen ME, Vazguez B, Roman JS (1997) Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer 38:5977–5982. doi:10.1016/S0032-3861(96)01058-0

    Article  CAS  Google Scholar 

  23. Peppas NA, Franson NM (1983) The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers. J Polym Sci Pol Phys 21:983–997. doi:10.1002/pol.1983.180210614

    Article  CAS  Google Scholar 

  24. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. doi:10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  25. Ostrowska-Czubenko J, Gierszewska M, Pieróg M (2015) pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. J Polym Res 22:153–164. doi:10.1007/s10965-015-0786-3

    Article  Google Scholar 

  26. Karadag E, Saraydin D, Güven O (2004) Water absorbency studies of γ-radiation crosslinked poly (acrylamide-co-2, 3-dihydroxybutanedioic acid) hydrogels. Nucl Instrum Methods Phys Res, Sect B 225:489–496. doi:10.1016/j.nimb.2004.06.010

    Article  CAS  Google Scholar 

  27. Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised Raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505–512

    CAS  Google Scholar 

  28. Chitra M, Yang S (2010) Pressure-induced polymerization of acrylic acid: a Raman spectroscopic study. J Phys Chem B 114:9744–9750. doi:10.1021/jp1034757

    Article  Google Scholar 

  29. Guilherme MR, Moia TA, Reis AV, Paulino AT, Rubira AF, Mattoso LHC, Muniz EC, Tambourgi EB (2009) Synthesis and water absorption transport mechanism of a pH-sensitive polymer network structured on vinyl-functionalized pectin. Biomacromolecules 10:190–196. doi:10.1021/bm801250p

    Article  CAS  Google Scholar 

  30. Gierszewska-Drużyńska M, Ostrowska-Czubenko J (2012) Mechanism of water diffusion into noncrosslinked and ionically crosslinked chitosan membranes. Journal Progress on Chemistry and Application of Chitin and Its Derivates 17:59–66

    Google Scholar 

  31. Kyzas GZ, Lazaridis NK, Bikiaris DN (2013) Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohyd Polym 91:198–208. doi:10.1016/j.carbpol.2012.08.016

    Article  CAS  Google Scholar 

  32. Ara NJ, Hasan MA, Rahman MA, Salam MA, Salam A, Shafiqul A (2013) Removal of remazol red from textile waste water using treated sawdust—an effective way of effluent treatment. Bangl Pharm J 16:93–98. doi:10.3329/bpj.v16i1.14501

    Article  Google Scholar 

  33. Hafez HS, El-Hag Ali A, Abdel-Mottaleb MSA (2005) Photocatalytic efficiency of titanium dioxide immobilized on PVP/AAc hydrogel membranes: a comparative study for safe disposal of wastewater of remazol red RB-133 textile dye. Int J Photoenergy 7:181–185. doi:10.1155/S1110662X05000279

    Article  CAS  Google Scholar 

  34. Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental-sensitive chitosan-gpolyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73:815–840. doi:10.1007/s00289-015-1521-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (México) for grant no. CB-169444. Author I.D. Antonio-Carmona acknowledges the financial support to PRODEP-SEP for postdoctoral position with the Academic Group of Ingeniería de Procesos Químicos y Ambientales (UASLP-CA-202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel A. Corona-Rivera or Víctor M. Ovando-Medina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corona-Rivera, M.A., Ovando-Medina, V.M., Bernal-Jacome, L.A. et al. Remazol red dye removal using poly(acrylamide-co-acrylic acid) hydrogels and water absorbency studies. Colloid Polym Sci 295, 227–236 (2017). https://doi.org/10.1007/s00396-016-3996-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3996-2

Keywords

Navigation