Skip to main content
Log in

Preparation and characterization of microcapsules containing industrially important reactive water-soluble polyamine

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyurea microcapsules containing water-soluble reactive polyamine, namely, polyaziridine (A33), were prepared by interfacial polymerization technique in non-aqueous medium, wherein (i) A33 was encapsulated for the first time as a neat amine without forming its salt or adduct and (ii) microcapsules formed were without any deleterious effect on A33. A systematic study was conducted by preparing microcapsules with different polyurea wall architectures. Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopic analysis of extracted A33 from microcapsules do not show any structural changes during microencapsulation. A titration method was developed to analyze the amount of encapsulated A33 quantitatively. Polyurea microcapsules obtained from reaction of ethylene diamine (E) and isophorone diisocyanate (I) monomers have shown better properties such as encapsulation efficiency and extent of agglomeration. Significant reduction in the size was observed when microcapsules of EI wall material were prepared by homogenizing the initial emulsion of A33 in paraffin oil. The process described in this paper for the preparation of microcapsules is cost-effective and industrially viable, which can find applications in agrochemicals, coatings, self-healing composites, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan JJ, Kimitsuka N, Jin R (2013) Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control. ACS Appl Mater and Interf 5:3126–3133. doi:10.1021/am400025z

    Article  CAS  Google Scholar 

  2. Waśkiewicz S, Zenkner K, Langer E, Lenartowicz M, Gajlewicz I (2013) Organic coatings based on new Schiff base epoxy resins. Prog in Org Coat 76:1040–1045. doi:10.1016/j.porgcoat.2013.02.017

    Article  Google Scholar 

  3. Park JH, Jana SC (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36:2758–2768. doi:10.1021/ma021509c

    Article  CAS  Google Scholar 

  4. Jagtap SB, Rao VS, Barman S, Ratna D (2015) Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent. Polym 63:41–51. doi:10.1016/j.polymer.2015.02.038

    Article  CAS  Google Scholar 

  5. Zhang H, Yang J (2014) Development of self-healing polymers via amine–epoxy chemistry: II. Systematic evaluation of self-healing performance. Smart Mater Stru 23:065003. doi:10.1088/0964-1726/23/6/065004

    Article  Google Scholar 

  6. Jin H, Mangun CL, Griffin AS, Moore JS, Sottos NR, White SR (2014) Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Adv Mater 26:282–287. doi:10.1002/adma.201303179

    Article  CAS  Google Scholar 

  7. Brostow W, Dutta M, Rusek P (2010) Modified epoxy coatings on mild steel: tribology and surface energy. Eu Polym J 46:2181–2189. doi:10.1016/j.eurpolymj.2010.08.006

    Article  CAS  Google Scholar 

  8. Cheng J, Li J, Zhang JY (2009) Curing behavior and thermal properties of trifunctional epoxy resin cured by 4,4′-diaminodiphenyl sulfone. Express Polym Lett 3:501–509. doi:10.3144/expresspolymlett.2009.62

    Article  CAS  Google Scholar 

  9. Cosco S, Ambrogi V, Musto P, Carfagna C (2007) Properties of poly (urea-formaldehyde) microcapsules containing an epoxy resin. J Appl Polym Sci 105:1400–1411. doi:10.1002/app.26263

    Article  CAS  Google Scholar 

  10. Peters GH, Schaab CK, Hilbelink RD, Davis TR (1971) Development of multipurpose capsular adhesive systems. NTIS, United States

    Google Scholar 

  11. Bagaria HG, Wong MS (2011) Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles. J Mater Chem 21:9454–9466. doi:10.1039/C1JM10712G

    Article  CAS  Google Scholar 

  12. Mouslmani M, Rosenholm JM, Prabhakar N, Peurla M, Baydoun E, Patra D (2015) Curcumin associated poly (allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Adv 5:18740–18750. doi:10.1039/C4RA12831A

    Article  CAS  Google Scholar 

  13. Patra D, Aridi R, Bouhadir K (2013) Fluorometric sensing of DNA using curcumin encapsulated in nanoparticle-assembled microcapsules prepared from poly (diallylammonium chloride-co-sulfur dioxide). Microchim Acta 180:59–64. doi:10.1007/s00604-012-0903-5

    Article  CAS  Google Scholar 

  14. Mouslmani M, Bouhadir KH, Patra D (2015) Poly (9-(2-diallylaminoethyl)adenine HCl-co-sulfur dioxide) deposited on silica nanoparticles constructs hierarchically ordered nanocapsules: curcumin conjugated nanocapsules as a novel strategy to amplify guanine selectivity among nucleobases. Biosens Bioelectron 68:181–188. doi:10.1016/j.bios.2014.12.036

    Article  CAS  Google Scholar 

  15. Patra D, Sleem F (2013) A new method for pH triggered curcumin release by applying poly(l-lysine) mediated nanoparticle-congregation. Anal Chim Acta 795:60–68. doi:10.1016/j.aca.2013.07.063

    Article  CAS  Google Scholar 

  16. McIlroy DA, Blaiszik BJ, Braun PV, White SR, Sottos NR (2008) Microencapsulation of polyfunctional amines for self-healing of epoxy-based composites. Polym Preprints 49:963–963

    CAS  Google Scholar 

  17. McIlroy DA, Blaiszik BJ, Caruso MM, White SR, Moore JS, Sottos NR (2010) Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites. Macromolecules 43:1855–1859. doi:10.1021/ma902251n

    Article  CAS  Google Scholar 

  18. Poe SL, Kobaslija M, McQuade DT (2007) Mechanism and application of a microcapsule enabled multicatalyst reaction. J Am Chem Soc 129:9216–9221. doi:10.1021/ja071706x

    Article  CAS  Google Scholar 

  19. Li J, Hughes AD, Kalantar TH, Drake IJ, Tucker CJ, Moore JS (2014) Pickering-emulsion-templated encapsulation of a hydrophilic amine and its enhanced stability using poly (allyl amine). ACS Macro Lett 3:976–980. doi:10.1021/mz500455j

    Article  CAS  Google Scholar 

  20. Jin H, Mangun CL, Stradley DS, Moore JS, Sottos NR, White SR (2012) Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polym 53:581–587. doi:10.1016/j.polymer.2011.12.005

    Article  CAS  Google Scholar 

  21. Fang W, Jun X, Jing-wen W, Shu-qin L (2012) Study on curing kinetics of a diglycidyl ether of bisphenol a epoxy resin/microencapsulated curing agent system. High Perform Polymer 24:730–737. doi:10.1177/0954008312451475

    Article  Google Scholar 

  22. Padwa A (2008) Polyaziridines and azirines: monocyclic. Emory University, Atlanta, GA, USA, pp. 1–104

    Google Scholar 

  23. Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217. doi:10.1016/j.progpolymsci.2010.08.003

    Article  CAS  Google Scholar 

  24. Nieminen AOK, Koenig JL (1990) Evaluation of water resistance of polyurethane dispersion coatings by nuclear magnetic resonance imaging. J Adhes 32:105–112. doi:10.1080/00218469008030184

    Article  CAS  Google Scholar 

  25. Shih FY, Kras WJ, Golub V (2007) Ink receptive coatings, composites and adhesive containing facestocks and labels. US 7309731 B2, United States

  26. Kavanagh MA, Haug BE, Krepski LR, Zhu P, Gaddam BN, Xie D, Zhang WJ, Wu Q (2013) Cross linkable acrylate adhesive polymer composition. US 2013/0150478 A1, United States

  27. Jian-qing H, Hai-jun Z, Wei-ping T, Feng W (2011) Synthesis and characterization of polyfunctional aziridine/polyester microcapsules by multiple emulsion-solvent evaporation method. J Cent S Univ Technol 18:337–342. doi:10.1007/s11771-011-0701-y

    Article  Google Scholar 

  28. Shukla, PG, Sivaram, S (2014) Polymer microcapsules containing biocide and preparation thereof by solvent evaporation technique. US Patent 8722071 B2, United States

  29. Shukla PG, Kalidhass B, Shah A, Palaskar DV (2002) Preparation and characterization of microcapsules of water-soluble pesticide monocrotophos using polyurethane as carrier material. J Microen 19:293–304. doi:10.1080/02652040110081343

    Article  CAS  Google Scholar 

  30. Bhaskar C, Shukla PG, Rajagopalan N (2001) An improved process for the preparation of microcapsular formulations of agrochemicals. Indian Patent 184975 06/2001, India

  31. Bhaskar C, Rajagopalan N, Shukla PG, Mitra RB (1994) Carbofuran microcapsules in urea (id-formaldehyde (f) condensate: effect of [f]/[u] ratio on physical characteristics and release properties. In: Polymer Science Recent Advances 1: 437

  32. Shukla PG, Rajagopalan N, Sivaram S (1999) Process for the preparation of polyurethane microcapsules of monocrotophos. US 5,962,003, 10/1999, United States

  33. Odhavji DJ, Venkata GR, Shukla PG, Jadhav AS (2016) Benefit agent containing delivery particle, US 9243 215B2, United States

  34. Bhaskar C, Shukla PG (1996) In: Proc. of 23rd International Symposium on Controlled Release of Bioactive Materials 371

  35. Shukla PG, Jadhav AS (2016) Microcapsules containing water-soluble amine and process for the preparation thereof, WO/2016/075708

  36. Shukla PG, Jackson M, Jadhav AS (2013) Proc. 40th annual meeting and Exposition of controlled release society (CRS), at the Honolulu, Hawaii, USA

  37. Shukla PG (2015) Microcapsules modified with nano materials for desired release pattern/rate and preparation thereof. Indian Patent Application No.1737/DEL/2015

  38. Shukla PG, Rajgopalan N, Bhaskar C, Sivaram S (1991) Crosslinked starch-urea formaldehyde (St-UF) as a hydrophilic matrix for encapsulation: studies in swelling and release of carbofuran. J Con Release 15:153–166. doi:10.1016/0168-3659(91)90073-m

    Article  CAS  Google Scholar 

  39. Shukla PG, Rajagopalan N, Sivaram S (1993) Starch urea-formaldehyde matrix encapsulation. IV. Influence of solubility and physical state of encapsulant on rate and mechanism of release. J Appl Polym Sci 48:1209–1222. doi:10.1002/app.1993.070480709

    Article  CAS  Google Scholar 

  40. Huang HP, Sellassie IG (1989) Preparation of microspheres of water soluble pharmaceuticals. J Microen 6:219–255. doi:10.3109/02652048909098024

    Article  CAS  Google Scholar 

  41. Tabata Y, Langer R (1993) Poly anhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharma Res 10:391–399. doi:10.1023/a:1018988222324

    Article  CAS  Google Scholar 

  42. Max ES (1982) Microencapsulation of water-soluble materials using a copolymer of poly (vinyl chloride). J Appl Polym Sci 27:4753–4757. doi:10.1002/app.1982.070271220

    Article  Google Scholar 

  43. Kil-Yeong C, Kyoung SM, Tahyun C (1991) Microencapsulation of pesticides by interfacial polymerization: 2. Polyamide microcapsules containing water soluble drug. Polymer (Korea) 15:548–555

    Google Scholar 

  44. Shukla PG (2016) Micro-spheres/capsules: by poly-(addition/condensation) in non-aqueous medium, Bioencapsulation Innovations. 16–17

  45. Barrett KEJ (1975) Dispersion polymerization in organic media. A Wiley-Interscience Publication

  46. Piirma I (ed) (1992) Polymeric surfactants, surfactant science series. Marcel Dekker, Inc., New York, p. 42

    Google Scholar 

  47. Bahadur P, Riess G (1991) Block copolymers: a special class of surfactants. Tenside, Surfactants, Detergents 28:173

    CAS  Google Scholar 

  48. Aronson MP (1989) The role of free surfactant in destabilizing oil-in-water emulsions. Langmuir 5:494–501. doi:10.1021/la00086a036

    Article  CAS  Google Scholar 

  49. Holmberg K, Jonsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution. John Wiley & Sons, Ltd, England

    Google Scholar 

  50. Anderson KR, Obey TM, Vincent B (1994) Surfactant-stabilized silicone oil in water emulsions. Langmuir 10:2493–2494. doi:10.1021/la00019a078

    Article  CAS  Google Scholar 

  51. Kuo YM, Wu CT, Wu WH, Chao DY (1994) Effect of surfactants on the particle sizes of Red#170 polyurea microcapsules. J Appl Polym Sci 52:1165–1173. doi:10.1002/app.1994.070520816

    Article  CAS  Google Scholar 

  52. Markush PH, Sarpeshkar AM, Tirpak RE (1993) Aqueous dispersions of encapsulated polyisocyanates. US5191012, United States

  53. Caruso MM, Blaiszik BJ, Jin H, Schelkopf SR, Stradley DS, Sottos NR, White SR, Moore JS (2010) Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl Mater Inter 2:1195–1199. doi:10.1021/am100084k

    Article  CAS  Google Scholar 

  54. Shukla PG (2006) Microencapsulation of liquid active agents. In: Functional Coatings (ed) Swapan Kumar Ghosh. WILEY-VCH Weinheim, Germany, pp. 153–186

    Google Scholar 

  55. Juen DR (1996) Method for microencapsulating a compound of a platinum group metal, CA 1338201 C

  56. Verhovnik G, Nguyen VC (2007) Process for the preparation of powders from slurries of fragranced minoplast capsules. WO 2007096790 A1

  57. Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polym 48:3520–3529. doi:10.1016/j.polymer.2007.04.008

    Article  CAS  Google Scholar 

  58. Boura SH, Peikari M, Ashrafi A, Samadzadeh M (2012) Self-healing ability and adhesion strength of capsule embedded coatings-micro and nano sized capsules containing linseed oil. Prog in Org Coat 75:292–300. doi:10.1016/j.porgcoat.2012.08.006

    Article  Google Scholar 

  59. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13:765–768. doi:10.1002/1521-4095(200105)13:10<765

    Article  CAS  Google Scholar 

  60. Schork FJ, Luo Y, Smulders W, Russum JP, Butte A, Fontenot K (2005) Miniemulsion polymerization. Polymer Particles 175:129–255. doi:10.1007/b100115

    Article  CAS  Google Scholar 

  61. Asua JM (2002) Miniemulsion polymerization. Prog in Polym Sci 27:1283–1346. doi:10.1016/s0079-6700(02)00010-2

    Article  CAS  Google Scholar 

  62. Loscertales IG, Barrero A, Guerroro I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698. doi:10.1126/science.1067595

    Article  CAS  Google Scholar 

  63. Ma GH, Su ZG, Omi S, Sundberg D, Stubbs J (2003) Microencapsulation of oil with poly (styrene-N,N-dimethyl amino ethyl methacrylate) by SPG emulsification technique: effects of conversion and composition of oil phase. J Collo Interf Sci 266:282–294. doi:10.1016/s0021-9797(03)00692-1

    Article  CAS  Google Scholar 

  64. Ding WK, Shah NP (2009) Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein. J Food Sci 74:231–236. doi:10.1111/j.1750-3841.2009.01195.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parshuram G. Shukla.

Ethics declarations

Funding

This study was carried out without any funding from external agency.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P.G., Jagtap, S.B., Biradar, S.C. et al. Preparation and characterization of microcapsules containing industrially important reactive water-soluble polyamine. Colloid Polym Sci 294, 2039–2050 (2016). https://doi.org/10.1007/s00396-016-3966-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3966-8

Keywords

Navigation