Skip to main content
Log in

The interaction between poly(ε-caprolactone) copolymers containing sulfobetaines and proteins

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Copolymers of poly(ε-caprolactone) containing zwitterionic sulfobetaine may be used as biomedical materials. The interaction of these materials with proteins is rarely reported. In this study, amphiphilic copolymers PCL20-PDEAS6, PCL20-PEG200-PDEAS6, and PCL20-PEG400-PDEAS6, which contained poly{N-[2-(methacryloyloxy)ethyl]-N,N-diethyl-N-(3-sulfopropyl)-ammonium} (PDEAS), were designed and synthesized in order to explore interaction of these materials and their micelles with proteins. The structure of the copolymers was confirmed by 1H-NMR, Fourier transform infrared spectroscopy (FTIR), and element analysis (EA). The copolymers could form either films or micelles. The adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) on the copolymer films and their micelles was studied. The results showed that BSA adsorbed on the films presented different tendencies from their micelle formulation. The protein adsorption may be related to the hydration in the shell of the micelles and the electrostatic interaction between the charges of zwitterion and the protein. The reason for the different amounts of protein adsorption between film and micelle formulation is the difference of molecular chain arrangement and charge distribution of PCLDEAS copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Sakata S, Inoue Y, Ishihara K (2015) Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces. Langmuir: ACS J Surf Colloids 31(10):3108–14. doi:10.1021/acs.langmuir.5b00351

    Article  CAS  Google Scholar 

  2. Hayward JA, Chapman D (1984) Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 5(3):135–42. doi:10.1016/0142-9612(84)90047-4

    Article  CAS  Google Scholar 

  3. Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X et al (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 30(12):2340–8. doi:10.1016/j.biomaterials.2008.12.070

    Article  CAS  Google Scholar 

  4. Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–73. doi:10.1016/j.biomaterials.2006.03.039

    Article  CAS  Google Scholar 

  5. Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: Facing up to complex realities. J Control Release: Off J Control Release Soc 141(3):265–76. doi:10.1016/j.jconrel.2009.10.032

    Article  CAS  Google Scholar 

  6. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–43. doi:10.1038/nnano.2012.237

    Article  CAS  Google Scholar 

  7. Ma H, Hyun J, Stiller P, Chilkoti A (2004) “Non-Fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16(4):338–41. doi:10.1002/adma.200305830

    Article  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  Google Scholar 

  9. Yao J, Wu H, Ruan Y, Guan J, Wang A, Li H (2011) “Reservoir” and “barrier” effects of ABC block copolymer micelle in hydroxyapatite mineralization control. Polymer 52(3):793–803. doi:10.1016/j.polymer.2010.12.017

    Article  CAS  Google Scholar 

  10. Stolnik S, Illum L, Davis SS (2012) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 64:290–301. doi:10.1016/j.addr.2012.09.029

    Article  Google Scholar 

  11. Xiao K, Luo J, Li Y, Lee JS, Fung G, Lam KS (2011) PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release: Off J Control Release Soc 155(2):272–81. doi:10.1016/j.jconrel.2011.07.018

    Article  CAS  Google Scholar 

  12. Peng Q, Wei XQ, Shao XR, Zhang T, Zhang S, Fu N et al (2014) Nanocomplex based on biocompatible phospholipids and albumin for long-circulation applications. ACS Appl Mater Interfaces 6(16):13730–7. doi:10.1021/am503179a

    Article  CAS  Google Scholar 

  13. Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley interdiscip Rev Nanomed Nanobiotechnol 4(2):219–33. doi:10.1002/wnan.1157

    Article  CAS  Google Scholar 

  14. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem 49(36):6288–308. doi:10.1002/anie.200902672

    Article  CAS  Google Scholar 

  15. Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29(32):4285–91. doi:10.1016/j.biomaterials.2008.07.039

    Article  CAS  Google Scholar 

  16. Lalani R, Liu L (2011) Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer 52(23):5344–54. doi:10.1016/j.polymer.2011.09.015

    Article  CAS  Google Scholar 

  17. Zhao C, Zhao J, Li X, Wu J, Chen S, Chen Q et al (2013) Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials 34(20):4714–24. doi:10.1016/j.biomaterials.2013.03.028

    Article  CAS  Google Scholar 

  18. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–61. doi:10.1021/bm701301s

    Article  CAS  Google Scholar 

  19. Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL et al (2009) Dual-thermo responsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules 10(8):2092–100. doi:10.1021/bm900208u

    Article  CAS  Google Scholar 

  20. Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH (2011) Zwitterionic sulfobetaine-grafted poly (vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces 3(4):1228–37. doi:10.1021/am200055k

    Article  CAS  Google Scholar 

  21. Zhang Z, Chen S, Jiang S (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12):3311–5. doi:10.1021/bm060750m

    Article  CAS  Google Scholar 

  22. Yuan J, Mao C, Zhou J, Shen J, Lin SC, Zhu W et al (2003) Chemical grafting of sulfobetaine onto poly(ether urethane) surface for improving blood compatibility. Polym Int 52(12):1869–75. doi:10.1002/pi.1277

    Article  CAS  Google Scholar 

  23. Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C et al (2011) Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir: ACS J Surf Colloids 27(18):11575–81. doi:10.1021/la202101q

    Article  CAS  Google Scholar 

  24. Cao J, Chen YW, Wang X, Luo XL (2011) Enhancing blood compatibility of biodegradable polymers by introducing sulfobetaine. J Biomed Mater Res Part A 97(4):472–9. doi:10.1002/jbm.a.33060

    Article  Google Scholar 

  25. Cao J, Lu A, Li C, Cai M, Chen Y, Li S et al (2013) Effect of architecture on the micellar properties of poly (varepsilon-caprolactone) containing sulfobetaines. Colloids Surf B: Biointerfaces 112:35–41. doi:10.1016/j.colsurfb.2013.07.038

    Article  CAS  Google Scholar 

  26. Cao J, Xiu KM, Zhu K, Chen YW, Luo XL (2012) Copolymer nanoparticles composed of sulfobetaine and poly(epsilon-caprolactone) as novel anticancer drug carriers. J Biomed Mater Res Part A 100(8):2079–87. doi:10.1002/jbm.a.34120

    Article  Google Scholar 

  27. Zhai S, Ma Y, Chen Y, Li D, Cao J, Liu Y et al (2014) Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym Chem 5(4):1285. doi:10.1039/c3py01325a

    Article  CAS  Google Scholar 

  28. Cao J, Zhai S, Li C, He B, Lai Y, Chen Y et al (2013) Novel pH-sensitive micelles generated by star-shape copolymers containing zwitterionic sulfobetaine for efficient cellular internalization. J Biomed Nanotechnol 9(11):1847–61. doi:10.1166/jbn.2013.1686

    Article  CAS  Google Scholar 

  29. Chang Y, Yandi W, Chen WY, Shih YJ, Yang CC, Chang Y et al (2010) Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 11(4):1101–10. doi:10.1021/bm100093g

    Article  Google Scholar 

  30. Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W et al (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(epsilon-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32(35):9525–35. doi:10.1016/j.biomaterials.2011.08.072

    Article  CAS  Google Scholar 

  31. Rubatat L, Li C, Dietsch H, Nykänen A, Ruokolainen J, Mezzenga R (2008) Structure−properties relationship in proton conductive sulfonated polystyrene−polymethyl methacrylate block copolymers (sPS − PMMA). Macromolecules 41(21):8130–7. doi:10.1021/ma801543q

    Article  CAS  Google Scholar 

  32. Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S et al (2014) In situ probing of the surface hydration of zwitterionic polymer brushes: structural and environmental effects. J Phys Chem C 118(29):15840–5. doi:10.1021/jp504293r

    Article  CAS  Google Scholar 

  33. Luengo-Alonso C, Torrado JJ, Ballesteros MP, Malfanti A, Bersani S, Salmaso S et al (2015) A novel performing PEG-cholane nanoformulation for amphotericin B delivery. Int J Pharm 495(1):41–51. doi:10.1016/j.ijpharm.2015.08.070

    Article  CAS  Google Scholar 

  34. Seo JH, Matsuno R, Konno T, Takai M, Ishihara K (2008) Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling—deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 29(10):1367–76. doi:10.1016/j.biomaterials.2007.11.039

    Article  CAS  Google Scholar 

  35. Lee JH, Ju YM, Kim DM (2000) Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials 21:683–91

    Article  CAS  Google Scholar 

  36. Liu P-S, Chen Q, Wu S-S, Shen J, Lin S-C (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1–2):387–94. doi:10.1016/j.memsci.2010.01.015

    Article  CAS  Google Scholar 

  37. Gombotz WR, Wang GH, Horbett TA, Hoffman AS (1991) Protein adsorption to poly(ethylene oxide) surfaces. J Biomed Mater Res 25(12):1547–62. doi:10.1002/jbm.820251211

    Article  CAS  Google Scholar 

  38. Zhang Z, Chen S, Chang Y, Jiang S (2006) Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110(22):10799–804. doi:10.1021/jp057266i

    Article  CAS  Google Scholar 

  39. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39(2):323–30. doi:10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c

    Article  CAS  Google Scholar 

  40. Song W, Chen H (2007) Protein adsorption on materials surfaces with nano-topography. Chin Sci Bull 52(23):3169–73. doi:10.1007/s11434-007-0504-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 51473099 and 51273125). We would also like to appreciate our laboratory members for the generous help and gratefully acknowledge the Analytical and Testing Center at Sichuan University for the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, A., Li, C., Wu, Z. et al. The interaction between poly(ε-caprolactone) copolymers containing sulfobetaines and proteins. Colloid Polym Sci 294, 1887–1899 (2016). https://doi.org/10.1007/s00396-016-3942-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3942-3

Keywords

Navigation