Skip to main content
Log in

Synergetic catalytic effect of α-cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Thermosensitive poly(NIPAAm-co-AMPS) hydrogels were prepared by copolymerization of N-isopropyl acrylamide (NIPAAm) and 2-acrylamido-2-methyl 1-propansulfonic acid (AMPS) by employing N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Uniformly distributed silver nanoparticles (Ag-NP) were obtained within hydrogel networks as nanoreactors via in situ reduction of silver nitrate (AgNO3) using sodium borohydride (NaBH4) as reducing agent. The catalytic properties of Ag-NP-poly(NIPAAm-co-AMPS) hydrogels presented obvious temperature dependence upon the reduction of 4-nitrophenol (4-NP) in aqueous solution. Interestingly, the addition of α-cyclodextrin (α-CD) could further enhance the reduction rate and change the associated activation parameters. This advanced catalytic system with temperature dependence and α-CD synergetic effect presented promising applications in catalytic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kruifa CG, Anemac S, Zhuc C, Haveac P, Cokerc C (2015) Water holding capacity and swelling of casein hydrogels. Food Hydrocolloid 44:372–379

    Article  Google Scholar 

  2. Wang Q, Yang Z, Wang L, Ma M, Xu B (2007) Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. Chem Commun 10:1032–1034

    Article  Google Scholar 

  3. Lee J, Ko JH, Lin E, Wallace P, Ruch F, Maynard HD (2015) Trehalose hydrogels for stabilization of enzymes to heat. Polym Chem 6:3443–3448

    Article  CAS  Google Scholar 

  4. Ahmed EM, Aggor FS (2010) Swelling kinetic study and characterization of crosslinked hydrogels containing silver nanoparticles. J Appl Polym Sci 117(4):2168–2174

    Article  CAS  Google Scholar 

  5. Hamidia M, Azadia A, Rafieia P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliver Rev 60(15):1638–1649

    Article  Google Scholar 

  6. Guo Q, Cao H, Li X, Liu S (2015) Thermosensitive hydrogel drug delivery system containing doxorubicin loaded CS–GO nanocarriers for controlled release drug in situ. Mater Technol 30(5):294–300

    Article  CAS  Google Scholar 

  7. Westa JL, Hubbell JA (1995) Photopolymerized hydrogel materials for drug delivery applications. React Polym 25(2–3):139–147

    Article  Google Scholar 

  8. Gariepy E, Leroux JC (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58(2):409–426

    Article  Google Scholar 

  9. Ma X, Li Y, Wang W, Ji Q, Xia Y (2013) Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. Eur Polym J 49(2):389–396

    Article  CAS  Google Scholar 

  10. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 64:49–60

    Article  Google Scholar 

  11. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohyd Polym 92(1):719–725

    Article  CAS  Google Scholar 

  12. Zhang C, Losego MD, Braun PV (2013) Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater 25(15):3239–3250

    Article  CAS  Google Scholar 

  13. Choi E, Jun I, Chang H, Park KM, Shin H, Park KD, Park J (2012) Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Lab Chip 12:302–308

    Article  CAS  Google Scholar 

  14. Wang E, Desai MS, Lee SW (2013) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13(6):2826–2830

    Article  CAS  Google Scholar 

  15. Inomata H, Goto S, Otake K, Saito S (1992) Effect of additives on phase transition of N-isopropylacrylamide gels. Langmuir 8:687–690

    Article  CAS  Google Scholar 

  16. Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126:15938–15939

    Article  CAS  Google Scholar 

  17. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  CAS  Google Scholar 

  18. Hapiot F, Menuel S, Monflier E (2013) Thermoresponsive hydrogels in catalysis. ACS Catal 3(5):1006–1010

    Article  CAS  Google Scholar 

  19. Gilbert B, Ono RK, Ching KA, Kim CS (2009) The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interf Sci 339(2):285–295

    Article  CAS  Google Scholar 

  20. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851

    Article  CAS  Google Scholar 

  21. Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298(5594):811–814

    Article  CAS  Google Scholar 

  22. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  23. Tam SK, Ng KM (2015) High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate. J Nanoparticle Res 17:466

    Article  Google Scholar 

  24. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589

    Article  CAS  Google Scholar 

  25. Gutes A, Hsia B, Sussman A, Mickelson W, Zettl A, Carraro C, Maboudian R (2012) Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4:438–440

    Article  CAS  Google Scholar 

  26. Liu J, Wang J, Zhu Z, Li L, Guo X, Lincoln SF, Prud’homme RK (2014) Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes. AICHE J 60(6):1977–1982

    Article  CAS  Google Scholar 

  27. Wu S, Kaiser J, Guo X, Li L, Lu Y, Ballauff M (2012) Recoverable platinum nanocatalysts immobilized on magnetic spherical polyelectrolyte brushes. Ind Eng Chem Res 51(15):5608–5614

    Article  CAS  Google Scholar 

  28. Scott RW, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109(2):692–704

    Article  CAS  Google Scholar 

  29. Saravanan G, Hara T, Yoshikawa H, Yamashita Y, Ueda S, Kobayashi K, Abe H (2012) Post-synthesis dispersion of metal nanoparticles by poly(amidoamine) dendrimers: size-selective inclusion, water solubilization, and improved catalytic performance. Chem Commun 48:7441–7443

    Article  CAS  Google Scholar 

  30. Wang D, Xin HL, Hovden R, Wang H, Yu Y, Muller DA, DiSalvo FJ (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87

    Article  CAS  Google Scholar 

  31. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Edit 45:813–816

    Article  CAS  Google Scholar 

  32. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48(7):1815–1823

    Article  CAS  Google Scholar 

  33. Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110(9):3930–3937

    Article  CAS  Google Scholar 

  34. Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core–shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961

    Article  CAS  Google Scholar 

  35. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126(25):7908–7914

    Article  CAS  Google Scholar 

  36. Sahiner N, Ozay O, Aktas N, Inger E, He J (2011) The on demand generation of hydrogen from Co–Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int J Hydrog Energy 36(23):15250–15258

    Article  CAS  Google Scholar 

  37. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  38. Liu J, Wang J, Wang Y, Liu C, Li L, Guo X, Lincoln SF (2015) A thermosensitive hydrogel carrier for nickel nanoparticles. Colloids and Interface Sci Commun 4:1–4

    Article  Google Scholar 

  39. Sahiner N, Ozay H, Ozay O, Aktas N (2010) New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2-and 4-nitrophenols. Appl Catal A 385(1–2):201–207

    Article  CAS  Google Scholar 

  40. Kim JH, Lee TR (2004) Thermo- and pH-responsive hydrogel-coated gold nanoparticles. Chem Mater 16(19):3647–3651

    Article  CAS  Google Scholar 

  41. Li G, Wen Q, Zhang T, Ju Y (2013) Synthesis and properties of silver nanoparticles in chitosan-based thermosensitive semi-interpenetrating hydrogels. J Appl Polym Sci 127(4):2690–2697

    Article  CAS  Google Scholar 

  42. Kim JH, Lee TR (2007) Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel–nanoparticle composites. Langmuir 23(12):6504–6509

    Article  CAS  Google Scholar 

  43. Faraga RK, EL-Saeeda S, Abdel-Raoufa ME (2015) Synthesis and investigation of hydrogel nanoparticles based on natural polymer for removal of lead and copper(II) ions. Desalin Water Treat: 1–11

  44. Uematsul Y, Araki T (2012) Effects of strongly selective additives on volume phase transition in gels. J Chem Phys 137(2):024902

    Article  Google Scholar 

  45. Xue C, Palaniappan K, Arumugam G, Hackney SA, Liu J, Liu H (2007) Sonogashira reactions catalyzed by water-soluble, β-cyclodextrin- capped palladium nanoparticles. Catal Lett 116(3–4):94–100

    Article  CAS  Google Scholar 

  46. Park C, Kim H, Kim S, Kim C (2009) Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J Am Chem Soc 131(46):16614–16615

    Article  CAS  Google Scholar 

  47. He J, Dominik S, Andreas O, Andrij P, Yan L (2015) Cyclodextrin modified microgels as “nanoreactor” for the generation of Au nanoparticles with enhanced catalytic activity. J Mater Chem A 3:6187–6195

    Article  Google Scholar 

  48. Wong YT, Yang C, Ying KC, Jia G (2002) Synthesis of a novel β-cyclodextrin-functionalized diphosphine ligand and its catalytic properties for asymmetric hydrogenation. Organometallics 21(9):1782–1787

    Article  CAS  Google Scholar 

  49. Machut C, Patrigeon J, Tilloy S, Bricout H, Hapiot F, Monflier E (2007) Self-assembled supramolecular bidentate ligands for aqueous organometallic catalysis. Angew Chem 119(17):3100–3102

    Article  Google Scholar 

  50. Gassensmith JJ, Smaldone RA, Forgan RS, Wilmer CE, Cordes DB, Botros YY (2012) Polyporous metal-coordination frameworks. Org Lett 14(6):1460–1463

    Article  CAS  Google Scholar 

  51. Chen X, Parker S, Zou G, Su W, Zhang Q (2010) β-Cyclodextrin functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4(11):6387–6394

    Article  CAS  Google Scholar 

  52. Chen X, Cheng X, Gooding JJ (2012) Detection of trace nitroaromatic isomers using indium tin oxide electrodes modified using β-cyclodextrin and silver nanoparticles. Anal Chem 84(20):8557–8563

    Article  CAS  Google Scholar 

  53. Devi LB, Mandal AB (2013) Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: synthesis, characterisation and application for the catalytic reduction of p-Nitrophenol. RSC Adv 3:5238–5253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge NSFC Grants (51403062 and 51273063), the Australian Research Council Grant DP110103177, China Postdoctoral Science Foundation (2013 M541485), 111 Project Grant (B08021), the Fundamental Research Funds for the Central Universities, and the Open Project of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan (2015BTRC001) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Wang or Xuhong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, J., Wang, Y. et al. Synergetic catalytic effect of α-cyclodextrin on silver nanoparticles loaded in thermosensitive hydrogel. Colloid Polym Sci 294, 1087–1095 (2016). https://doi.org/10.1007/s00396-016-3867-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3867-x

Keywords

Navigation