Skip to main content
Log in

Correlating surface activity with structural and environmental parameters for alkylamidosulfobetaine surfactants

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Surface activities of 3-(N-alkylamidopropyl-N,N-dimethyl ammonium) alkanesulfonates [(U)n-DAS-m] and their dependence on the environmental and structural parameters were studied systemically. Environmental parameter–property relationship was investigated by changing salinity, pH, and temperature while using 3-(N-tetradecanoamidopropyl-N,N-dimethyl ammonium) propanesulfonates (14-DAS) as a model surfactant, whereas structure–property relationship was studied by changing the length of hydrophobic tail, the introduction of an unsaturated carbon-carbon double bond to the hydrophobic tail, and the distance between the positive and negative charges. Notably, the critical micelle concentration (cmc) of alkylamidosulfobetaine surfactants decreases monotonously with increasing NaCl content, following a linear function as lgcmc = A[NaCl] + B. The increase in temperature causes a slight decrease of γ cmc and a slight increase of cmc. The change in pH has no obvious effect on the solution properties of alkylamidosulfobetaine surfactants. The introduction of every two methylene units or an unsaturated carbon-carbon double bond in the hydrophobic tail results in the decrease of cmc by nearly one order of magnitude. The spacer length between the positive and negative charges has little effect on the surface activity of alkylamidosulfobetaines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Myers D (2006) In: Surfactant science and technology, 3rd edn. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  2. Lin H-P, Mou C-Y (2002) Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res 35:927–935

    Article  CAS  Google Scholar 

  3. Ji Q, Acharya S, Hill JP, Richards GJ, Ariga K (2008) Multi-dimensional control of surfactant-guided assemblies of quantum gold particles. Adv Mater 20:4027–4032

    Article  CAS  Google Scholar 

  4. Zemb T, Budois M, Demé B, Gulik-Krzywicki T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283:816–819

    Article  CAS  Google Scholar 

  5. Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed 48:274–288

    Article  CAS  Google Scholar 

  6. Dwars T, Paetzold E, Oehme G (2005) Reactions in micellar systems. Angew Chem Int Ed 44:7174–7199

    Article  CAS  Google Scholar 

  7. Manne S, Gaub HE (1995) Molecular organization of surfactants at solid-liquid interfaces. Science 270:1480–1482

    Article  CAS  Google Scholar 

  8. Zana R (ed) (2005) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles, and lyotropic phases. CRC Press, Boca Raton

    Google Scholar 

  9. Fisher P, Rehage H, Grüning B (2002) Linear flow properties of dimer acid betaine solutions with and without changed ionic strength. J Phys Chem B 106:11041–11046

    Article  Google Scholar 

  10. Gonenne A, Ernst R (1978) Solubilization of membrane proteins by sulfobetaines, novel zwitterionic surfactants. Anal Biochem 87:28–38

    Article  CAS  Google Scholar 

  11. Rosen MJ (2004) Surfactants and interfacial phenomenon, 3rd edn. New York, John Wiley & Sons

    Book  Google Scholar 

  12. Domingo X (2006) In: Amphoteric surfactants, 2nd ed.; Lomax EG, Ed; Marcel Dekker, New York

  13. Weers JG, Rathman JF, Axe FU, Crichlow CA, Foland LD, Scheuing DR, Wiersema RJ, Zielske AG (1991) Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir 7:854–867

    Article  CAS  Google Scholar 

  14. Kato K, Kondo H, Morita A, Esumi K, Meguro K (1986) Synthesis of polystyrene latex with amphoteric surfactant and its characterizarion. Colloid Polym Sci 264:737–742

    Article  CAS  Google Scholar 

  15. Danov KD, Kralchevska SD, Kralchevsky PA, Ananthapadmanabhan KP, Lips A (2004) Mixed solutions of anionic and zwitterionic surfactant (betaine): surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir 20:5445–5453

    Article  CAS  Google Scholar 

  16. Yoshimura T, Ichinokawa T, Kaji M, Esumi K (2006) Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloids Surf A 273:208–212

    Article  CAS  Google Scholar 

  17. Guo S, Wang H, Shi J, Pan B, Cheng Y (2015) Synthesis and properties of a novel alkyl-hydroxyl-sulfobetaine zwitterionic surfactant for enhanced oil recovery. J Petrol Explor Prod Technol 5:321–326

    Article  CAS  Google Scholar 

  18. Shi C, Song S, Ren H, Zen Q, Tang X (2015) Synthesis of didodecylmethyl hydroxyl sulfobetaine and its evaluation for alkali-free flooding. J Petrol Explor Prod Technol 5:219–224

    Article  CAS  Google Scholar 

  19. Zhang F, Ma D, Wang Q, Zhu Y, Luo W (2013) A novel hydroxylpropyl sulfobetaine surfactant for high temperature and high salinity reservoirs. Paper IPTC-17022 presented at International Petroleum Technology Conference held in Beijing, 26–28 March

  20. Zhao J, Dai C, Ding Q, Du M, Feng H, Wei Z, Chen A, Zhao M (2015) The structure effect on the surface and interfacial properties of zwitterionic sulfobetaine surfactants for enhanced oil recovery. RSC Adv 5:13993–14001

    Article  CAS  Google Scholar 

  21. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23:12849–12856

    Article  CAS  Google Scholar 

  22. Chu Z, Feng Y (2009) A facile route towards the preparation of ultra-long-chain amidosulfobetaine surfactants. Synlett 16:2655–2658

    Google Scholar 

  23. Chu Z, Feng Y (2012) Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28:1175–1181

    Article  CAS  Google Scholar 

  24. Chu Z, Feng Y (2011) Thermo-switchable surfactant gel. Chem Commun 47:7191–7193

    Article  CAS  Google Scholar 

  25. Chu Z, Feng Y, Su X, Han Y (2010) Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant. Langmuir 26:7783–7791

    Article  CAS  Google Scholar 

  26. Chu Z, Feng Y (2010) Amidosulfobetaine surfactant gels with shear banding transitions. Soft Matter 6:6065–6067

    Article  CAS  Google Scholar 

  27. Chu Z, Feng Y, Sun H, Li Z, Song X, Han Y, Wang H (2011) Aging mechanism of unsaturated long-chain amidosulfobetaine worm fluids at high temperature. Soft Matter 7:4485–4489

    Article  CAS  Google Scholar 

  28. Harrison D, Szule R, Fisch MR (1998) Solution behavior of the zwitterionic surfactant octadecyldimethylbetaine. J Phys Chem B 102:6487–6492

    Article  CAS  Google Scholar 

  29. Laschewsky A, Wattebled L, Arotçaréna M, Habib-Jiwan JL, Rakotoaly RH (2005) Synthesis and properties of cationic oligomeric surfactants. Langmuir 21:7170–7179

    Article  CAS  Google Scholar 

  30. Klevens HB (1953) Structure and aggregation in dilate solution of surface active agents. J Am Oil Chem Soc 30:74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the Natural Science Foundation of China (21173207) and Science and Technology Department of Sichuan Province (2012NZ0006 and 2010JQ0029) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonglin Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Chu, Z. Correlating surface activity with structural and environmental parameters for alkylamidosulfobetaine surfactants. Colloid Polym Sci 294, 957–963 (2016). https://doi.org/10.1007/s00396-016-3855-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3855-1

Keywords

Navigation