Skip to main content
Log in

A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized and used as a toughening agent in an epoxy thermoset. The incorporation of the epoxidized star polymer resulted in the formation of nanostructures and it was fixed by a crosslinking reaction. The formation of nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The mechanical properties such as toughness and tensile strength were considerably increased due to the nanostructures formed by reactive blending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matyjaszewski K, Gnanou Y, Leibler L, (2007) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley VCH. Vol. 4: 1–2982.

  2. Adelsberger AM, Bivigou-Koumba A, Miasnikova P, Busch A, Laschewsky P, Müller-Buschbaum PCM (2015) Polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution—a SANS study of the temperature-induced switching behavior. Colloid & Polymer Science 293:1515–1523

    Article  CAS  Google Scholar 

  3. Francis R, Baby DK, Gnanou Y (2015) Synthesis and self-assembly of chitosan-g-polystyrene copolymer. A new route for the preparation of heavy metal nanoparticles. Journal of Colloid and Interface Science 438:110–115

    Article  CAS  Google Scholar 

  4. Touris A, Hadjichristidis N (2011) Cyclic and multiblock polystyrene-block-polyisoprene copolymers by combining anionic polymerization and azide/alkyne click chemistry. Macromolecules 44:1969–1976

    Article  CAS  Google Scholar 

  5. Pinazzi CP, Menil A, Rabadeux JC, Pleurdeau A (1975) Polyisoprene and polybutadiene derivatives of potential biomedical interest. Journal of Polymer Science: Polymer Symposia 52:1–7

    CAS  Google Scholar 

  6. Kipnusu W, Elmahdy M, Treß M, Fuchs M, Mapesa E, Smilgies DM, Zhang J, Papadakis CM, Kremer F (2013) Molecular order and dynamics of nanometric thin layers of poly(styrene-b-1,4-isoprene) diblock copolymers. Macromolecules 46:9729–9737

    Article  CAS  Google Scholar 

  7. Matmour R, Francis R, Duran RS, Gnanou Y (2005) Interfacial behavior of anionically synthesized amphiphilic star block copolymers based on polybutadiene and poly(ethylene oxide) at the air/water interface. Macromolecules 38:7754–7767

    Article  CAS  Google Scholar 

  8. Li W, Wang H, Yu L, Morkved TL, Jaeger HM (1999) Synthesis of oligophenylenevinylenes-polyisoprene diblock copolymers and their microphase separation. Macromolecules 32:3034–3044

    Article  CAS  Google Scholar 

  9. Kishi H, Kunimitsu Y, Imade J, Oshita S, MorishitaY AM (2011) Nano-phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys. Polymer 52:760–769

    Article  CAS  Google Scholar 

  10. Mijovic J, Shen M, Sy JW, Mondragon I (2000) Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 33:5235–5241

    Article  CAS  Google Scholar 

  11. Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114:1082–1115

    Article  CAS  Google Scholar 

  12. Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS (1997) Self-assembly and polymerization of epoxy resin amphiphilic block copolymer nanocomposites. J Am Chem Soc 119:2749–2751

    Article  CAS  Google Scholar 

  13. Lipic PM, Bates FS, Hillmyer MA (1998) Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J Am Chem Soc 120:8963–8971

    Article  CAS  Google Scholar 

  14. Yi FP, Zheng SX, Liu TX (2009) Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer. J Phys Chem B 113:1857–1864

    Article  CAS  Google Scholar 

  15. Meng F, Zheng S, Li H, Liang Q, Liu T (2006) Formation of ordered nanostructures in epoxy thermosets: a mechanism of reaction-induced microphase separation. Macromolecules 39:5072–5078

    Article  CAS  Google Scholar 

  16. Xu Z, Zheng S (2007) Reaction-induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n butyl acrylate) diblock copolymer. Macromolecules 40:2548–2555

    Article  CAS  Google Scholar 

  17. Hu D, Zheng S (2009) Reaction-induced microphase separation in epoxy resin containing polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer. Eur Polym J 45:3326–3331

    Article  CAS  Google Scholar 

  18. Hermel-Davidock TJ, Tang HS, Murray DJ, Hahn SF (2007) Control of the block copolymer morphology in templated epoxy thermosets. J. Polym. Sci. Part B: Polym. Phys. 45:3338–3345

    Article  CAS  Google Scholar 

  19. George SM, Puglia D, Kenny JM, Causin V, Parameswaranpillai J, Thomas S (2013) Morphological and mechanical characterization of nanostructured thermosets from epoxy and styrene-block-butadiene-block-styrene triblock copolymer. Ind Eng Chem Res 52:9121–9129

    Article  CAS  Google Scholar 

  20. Robert B. Grubbs, Jennifer M. Dean, Margaret E. Broz, Frank S. Bates (2000) Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 33:9522-9534-9540.

  21. Otsu T, Yoshida M (1982) Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol. Chem Rapid Commun 3:127–132

    Article  CAS  Google Scholar 

  22. Ajayaghosh A, Francis R, Das S (1993) Polymer-bound S-benzoyl O-ethyl xanthate. A new heterogeneous photoinitiator. Eur. Polym. J. 29:63–68

    Article  CAS  Google Scholar 

  23. Francis R, Ajayaghosh A (2000) Minimization of homopolymer formation and control of dispersity in free radical induced graft polymerization using xanthate derived macro-photoinitiators. Macromolecules 33:4699–4704

    Article  CAS  Google Scholar 

  24. Francis R, Taton D, Logan JL, Masse P, Gnanou Y, Duran RS (2003) Synthesis and surface properties of amphiphilic star-shaped and dendrimer-like copolymers based on polystyrene core and poly(ethylene oxide) corona. Macromolecules 36:8253–8259

    Article  CAS  Google Scholar 

  25. Mishra AK, Patel VK, Vishwakarma NK, Biswas CS, Raula M, Misra A, Mandal TK, Ray B (2011) Synthesis of well-defined amphiphilic poly(ε-caprolactone)-b-poly(N-vinylpyrrolidone) block copolymers via the combination of ROP and xanthate-mediated RAFT polymerization. Macromolecules 44:2465–2473

    Article  CAS  Google Scholar 

  26. Stellman JM, Woodward AE (1969) Chain folding in poly(trans-1,4-butadiene) crystals. Journal of Polymer Science Part B: Polymer Letters 7:755–759

    Article  CAS  Google Scholar 

  27. Chocair A, Eisenberg A (2003) Control of amphiphilic block copolymer morphologies using solution conditions. Eur Phys J E10:37–44

    Google Scholar 

  28. Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Diblock copolymer micelles in dilute solution. Macromolecules 38:5330–5336

    Article  CAS  Google Scholar 

  29. Price C (2009) Micelle formation by block copolymers in organic solvents. Pure Appl. Chem. 55:1563–1572

    Google Scholar 

  30. Lei L, Gohy J-F, Willet N, Zhang J-X, Varshney S, Jerome R (2004) Tuning of the morphology of core-shell-corona micelles in water. I Transition from Sphere to Cylinder Macromolecules 37:1089–1094

    CAS  Google Scholar 

  31. George SM, Puglia D, Kenny JM, Jyotishkumar P, Thomas S (2012) Cure kinetics and thermal stability of micro and nanostructured thermosetting blends of epoxy resin and epoxidized styrene-block-butadiene-block-styrene triblock copolymer systems. Polym Eng Sci 52:2336–2242

    Article  CAS  Google Scholar 

  32. Liu J, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H (2008) Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41:7616–7622

    Article  CAS  Google Scholar 

  33. Francis R, Baby DK (2014) Toughening of epoxy thermoset with polystyrene block-polyglycolic acid star copolymer: nanostructure-mechanical property correlation. Ind Eng Chem Res 53:17945–17951

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RF gratefully thanks Prof. Yves Gnanou (Dean, PSE Division, KAUST, Saudi Arabia) and Prof. R.S. Duran (LSU, USA) for useful discussions in making the precursor star polymer. RF and DKB thank CSIR and DST, Govt of India for research fellowship. RF and DKB also thank UGC and State Govt for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Francis.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This study was funded by the Council of Scientific and Industrial Research Extra Mural Research Scheme (No. 01(2201)/07/EMR-II), Government of India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, R., Baby, D.K. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset. Colloid Polym Sci 294, 565–574 (2016). https://doi.org/10.1007/s00396-015-3810-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3810-6

Keywords

Navigation