Skip to main content
Log in

Phase behaviour and vesicle formation in catanionic mixtures of Na oleate and alkyl trimethyl ammonium bromide and its salt-free version

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We have investigated catanionic mixtures of the anionic surfactant sodium oleate with various alkyltrimethyl ammonium bromides of different alkyl chain length between octyl and tetradecyl. Around equimolar mixing vesicles are formed but only for a chain length of decyl and longer. For shorter chains and with increasing asymmetry of the mixing ratio, the vesicle phase disappears and instead wormlike micelles are formed, which leads to a viscoelastic behaviour of the samples. The vesicle systems are often also viscoelastic, if they contain densely packed multi-lamellar vesicles but this depends also on their salt content, as for instance the salt-free decyl system forms unilamellar vesicles of low viscosity. It is observed that the most well-defined vesicles (unilamellar) occur upon admixing the intermediate cationic surfactant with the dodecyl chain, which then results in low viscous solutions. In general, by appropriately choosing the mixing ratio, the length of the alkyl chain and also the ionic strength of the solution can tune the structure and the properties of these catanionic surfactant mixtures over a wide range in a systematic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18:3797–3803

    Article  CAS  Google Scholar 

  2. Chellamuthu M, Rothstein JR (2008) Extensional rheology of branched wormlike micelle solutions. J Rheol 52:865–884

    Article  CAS  Google Scholar 

  3. Yin H, Lin Y, Huang J (2009) Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system. J Colloid Interface Sci 338:177–183

    Article  CAS  Google Scholar 

  4. Prévost S, Gradzielski M (2009) SANS investigation of the microstructures in catanionic mixtures of SDS/DTAC and the effect of various added salts. J Colloid Interface Sci 337:472–484

    Article  Google Scholar 

  5. Vautrin C, Dubois M, Zemb T, Schmölzer S, Hoffmann H, Gradzielski M (2003) Chain melting in swollen catanionic bilayers. Colloids Surf A 217:165–170

    Article  CAS  Google Scholar 

  6. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JAN (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 245:1371–1374

    Article  CAS  Google Scholar 

  7. Kaler EW, Herrington KL, Murthy AK, Zasadzinski JAN (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96:6698–6707

    Article  CAS  Google Scholar 

  8. Herrington KL, Kaler EW, Miller DD, Zasadzinski JAN, Chirivolu S (1993) Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J Phys Chem 97:13792–13802

    Article  CAS  Google Scholar 

  9. Marques EF, Regev O, Khan A, da Graca MM, Lindman B (1999) Vesicle formation and general phase behavior in the catanionic mixture SDS−DDAB−water the cationic-rich side. J Phys Chem B 103:8353–8363

    Article  CAS  Google Scholar 

  10. Schmölzer S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-ray scattering studies of micellar transformations. Phys Rev Lett 88:258301

    Article  Google Scholar 

  11. Glinel K, Dubois M, Verbavatz JM, Sukhorukov GB, Zemb T (2004) Determination of pore size of catanionic icosahedral aggregates. Langmuir 20:8546–8551

    Article  CAS  Google Scholar 

  12. Dubois M, Lizunov V, Meister A, Gulik-Krzywicki T, Verbavatz JM, Perez E, Zimmerberg J, Zemb T (2004) Shape control through molecular segregation in giant surfactant aggregates. Proc Natl Acad Sci U S A 101:15082–15087

    Article  CAS  Google Scholar 

  13. Amante JC, Scamehorn JF, Harwell JH (1991) Precipitation of mixtures of anionic and cationic surfactants: II. Effect of surfactant structure, temperature, and pH. J Colloid Interface Sci 144:243–253

    Article  CAS  Google Scholar 

  14. Moroi Y (1992) Micelles: theoretical and applied aspects. Springer, New York

    Book  Google Scholar 

  15. Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15:R655–R697

    Article  CAS  Google Scholar 

  16. Rosoff M (ed) (1996) Vesicles, Surf. Science Ser. Vol. 62. Marcel Dekker, New York

    Google Scholar 

  17. Lasic DD (1997) Liposomes in gene delivery. CRC Press, Boca Raton

    Google Scholar 

  18. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56:675–711

    Article  CAS  Google Scholar 

  19. Fernandez P, Willenbacher N, Frechen T, Kühnle A (2005) Vesicles as rheology modifier. Colloids Surf A 262:204–210

    Article  CAS  Google Scholar 

  20. Lasic DD (1993) Liposomes: from physics to applications. Elsevier, New York

    Google Scholar 

  21. Tamamushi B, Shirai M, Tamaki K (1958) A study on the micellar solutions of sodium oleate and elaidate. Bull Chem Soc Jpn 31:467–472

    Article  CAS  Google Scholar 

  22. Reiss-Husson F, Luzzati V (1964) The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-Ray scattering techniques. J Phys Chem 68:3504–3511

    Article  CAS  Google Scholar 

  23. Goetz KG, Heckmann K (1958) The Shape of soap micelles and other polyions as obtained from anisotropy of electrical conductivity. J Colloid Sci 13:266–272

    Article  Google Scholar 

  24. McBain JW, Sierichs WC (1948) The solubility of sodium and potassium soaps and diagrams of aqueous potassium soaps. J Am Oil Chem Soc 25:221–225

    Article  CAS  Google Scholar 

  25. Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4:33–39

    Article  CAS  Google Scholar 

  26. Gradzielski M, Müller M, Bergmeier M, Hoffmann H, Hoinkis E (1999) Structural and macroscopic characterization of a Gel phase of densely packed monodisperse, unilamellar vesicles. J Phys Chem B 103:1416–1424

    Article  CAS  Google Scholar 

  27. Gradzielski M, Bergmeier M, Hoffmann H, Müller M, Grillo I (2000) Vesicle Gel formed by a self-organization process. J Phys Chem B 104:11594–11597

    Article  CAS  Google Scholar 

  28. Cheng Z, Luisi PL (2003) Coexistence and mutual competition of vesicles with different size distributions. J Phys Chem B 107:10940–10945

    Article  CAS  Google Scholar 

  29. Tanaka S, Kawasaki H, Suzuki M, Annaka M, Nemoto N, Almgren M, Maeda H (2004) Vesicle formation in oleyldimethylamine oxide/sodium oleate mixtures. Colloid Polym Sci 282:1140–1145

    Article  CAS  Google Scholar 

  30. Edwards K, Silvander M, Karlsson G (1995) Aggregate structure in dilute aqueous dispersions of oleic acid/sodium oleate and oleic acid/sodium oleate/Egg phosphatidylcholine. Langmuir 11:2429–2434

    Article  CAS  Google Scholar 

  31. Fukuda H, Goto A, Yoshioka H, Goto R, Morigaki K, Walde P (2001) Electron spin resonance study of the pH-induced transformation of micelles to vesicles in an aqueous oleic acid/oleate system. Langmuir 17:4223–4231

    Article  CAS  Google Scholar 

  32. Ziserman L, Abezgauz L, Ramon O, Raghavan SR, Danino D (2009) Origins of the viscosity peak in wormlike micellar solutions. 1. Mixed catanionic surfactants. A cryo-transmission electron microscopy study. Langmuir 25:10483–10489

    Article  CAS  Google Scholar 

  33. Koshy P, Aswal VK, Venkatesh M, Hassan PA (2011) Unusual scaling in the rheology of branched wormlike micelles formed by cetyltrimethylammonium bromide and sodium oleate. J Phys Chem B 115:10817–10825

    Article  CAS  Google Scholar 

  34. Mukerjee P, Mysels KJ (1971) Critical micelle concentration of aqueous surfactant systems. US Government Printing office, Washington, DC

    Google Scholar 

  35. Flockhart BD, Graham H (1953) Study of dilute aqueous solutions of sodium oleate. J Colloid Sci 8:105–115

    Article  CAS  Google Scholar 

  36. Cotton JP (1991) In: Lindner P, Zemb T (eds) Neutron, X-ray and light scattering. Elsevier, New York, p 19

    Google Scholar 

  37. Li H, Hao J (2008) Phase behavior and rheological properties of a salt-free catanionic surfactant TTAOH/LA/H2O system. J Phys Chem B 112:10497–10508

    Article  CAS  Google Scholar 

  38. Vlachy N, Merle C, Touraud D, Schmidt J, Talmon Y, Heilmann J, Kunz W (2008) Mesodynamics: watching vesicle formation in-situ by small-angle neutron scattering. Langmuir 24:9983–9988

    Article  CAS  Google Scholar 

  39. Bressel K, Muthig M, Prévost S, Grillo I, Gradzielski M (2010) Mesodynamics: watching vesicle formation in-situ by small-angle neutron scattering. Colloid Polym Sci 288:827–840

    Article  CAS  Google Scholar 

  40. Bressel K, Prevost S, Appavou M-S, Tiersch B, Koetz J, Gradzielski M (2011) Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on the chain length of the perfluoro surfactant. Soft Matter 7:11232–11242

    Article  CAS  Google Scholar 

  41. Södermann O, Herrington KL, Kaler EW, Miller DD (1997) Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactants. Langmuir 13:5531–5538

    Article  Google Scholar 

  42. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72:1525–1568

    Article  Google Scholar 

  43. Hoffmann H, Thunig C, Schmiedel P, Munkert U (1995) Gels from surfactant solutions with densely packed multilamellar vesicles. Faraday Discuss 101:319–333

    Article  Google Scholar 

  44. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    Article  CAS  Google Scholar 

  45. Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    Article  CAS  Google Scholar 

  46. Foerster S, Konrad M, Lindner P (2005) Shear thinning and orientational ordering of wormlike micelles. Phys Rev Lett 94:017803

    Article  Google Scholar 

  47. Cross MM (1965) Rheology of Non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437

    Article  CAS  Google Scholar 

  48. Gradzielski M (2011) The rheology of vesicle and disk systems—relations between macroscopic behaviour and microstructure. Curr Opin Colloid Interface Sci 16:13–17

    Article  CAS  Google Scholar 

  49. Fjuii S, Richtering W (2006) Size and visocoelasticity of spatially confined multilamellar vesicles. Eur Phys J E 19:139–148

    Article  Google Scholar 

  50. Bergmeier M, Gradzielski M, Hoffmann H, Mortensen K (1999) Behavior of ionically charged lamellar systems under the influence of a shear field. J Phys Chem B 103:1605–1617

    Article  CAS  Google Scholar 

  51. Hao J, Yuan Z, Liu W, Hoffmann H (2004) Aggregate transition from nanodisks to equilibrium among vesicles and disks. J Phys Chem B 108:19163–19168

    Article  CAS  Google Scholar 

  52. Shen Y, Hao J, Hoffmann H (2007) Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter 3:1407–1412

    Article  CAS  Google Scholar 

  53. Silva BFB, Marques E, Olsson U (2011) Aqueous phase behavior of salt-free catanionic surfactants: the influence of solubility mismatch on spontaneous curvature and balance. Soft Matter 7:225–236

    Article  CAS  Google Scholar 

  54. Ekwall P, Mandell L, Fontell K (1969) Solubilization in micelles and mesophases and the transition from normal to reversed structures. Mol Cryst Liq Cryst 8:157–213

    CAS  Google Scholar 

  55. Almgren M, Rangelov S (2004) Spontaneously formed nonequilibrium vesicles of cetyltrimethlyammonium bromide and sodium octyl sulfate in aqueous dispersions. Langmuir 20:6611–6618

    Article  CAS  Google Scholar 

  56. Jiang N, Karlsson G, Almgren M (2009) Perforated vesicles as intermediate structures in the transition from vesicles to micelles in dilute aqueous systems containing long chain alcohols and ionic surfactants. J Dispers Sci Technol 30:802–808

    Article  CAS  Google Scholar 

  57. Almgren M, Edwards K, Karlsson G (2000) Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A 174:3–21

    Article  CAS  Google Scholar 

  58. Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci U S A 98:1353–1357

    Article  CAS  Google Scholar 

  59. Coldren B, van Zanten R, Mackel MJ, Zasadzinski JA, Jung HT (2003) From vesicle size distributions to bilayer elasticity via cryo-transmission and freeze-fracture electron microscopy. Langmuir 19:5632–5639

    Article  CAS  Google Scholar 

  60. Miller CA, Gradzielski M, Hoffmann H, Krämer U, Thunig C (1990) Experimental results for the L3-phase in a zwitterionic surfactant system and their implications regarding structures. Colloid Polym Sci 268:1066–1072

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by DFG grant GR1030/6-1. The Laboratoire Léon Brillouin (LLB), Saclay, France is gratefully acknowledged for granting SANS beam time. For help with the SANS measurements, we are grateful to Julian Oberdisse and Markus Burkhardt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gradzielski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabi, E., Drechsler, M. & Gradzielski, M. Phase behaviour and vesicle formation in catanionic mixtures of Na oleate and alkyl trimethyl ammonium bromide and its salt-free version. Colloid Polym Sci 293, 3119–3130 (2015). https://doi.org/10.1007/s00396-015-3737-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3737-y

Keywords

Navigation