Skip to main content
Log in

Exploring physical stability characteristics of positively charged catanionic vesicle/DNA complexes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Cationic vesicles fabricated from various novel materials have been recently developed for DNA delivery applications, and the physical stability of the vesicle/DNA complexes played an important role in the transfection efficiency. In this study, positively charged catanionic vesicles composed of hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), ditetradecyldimethylammonium bromide (DTDAB), and cholesterol were prepared in buffer solution by a forced formation approach, and the association behavior of the catanionic vesicles with two types of DNA molecules with the consideration of the vesicle/DNA complex stability was explored by dynamic light scattering, fluorescence polarization, and DNA electrophoresis techniques. In a buffer solution of pH 7.4, HTMA-DS/DTDAB/cholesterol catanionic vesicles with high physical stability and positive charge character were successfully fabricated. A toxicity examination then implied that the catanionic vesicles have the potential of being applied in transfection applications. It is noted that the catanionic vesicle dispersions became unstable as prepared from a concentrated one by dilution due to the less charged vesicle surfaces and the more rigid vesicular bilayers, which could be explained by the enhanced dissolution of HTMA+ from the vesicles. The physical stability and charge character of the catanionic vesicle/DNA complexes were found strongly dependent on the mixing ratio of the vesicle to DNA. The formation of the catanionic vesicle/DNA complexes was also confirmed by an electrophoresis analysis. Moreover, not only the electrostatic repulsion between the vesicle/DNA complexes but also the molecular packing of the vesicular bilayers played roles in governing the physical stability of the vesicle/DNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interf 147–148:18–35. doi:10.1016/j.cis.2008.10.001

    Article  Google Scholar 

  2. Lundberg D, Berezhnoy NV, Lu C, Korolev N, Su C-J, Alfredsson V, Miguel MG, Lindman B, Nordenskiold L (2010) Interactions between cationic lipid bilayers and model chromatin. Langmuir 26:12488–12492. doi:10.1021/la1014658

    Article  CAS  Google Scholar 

  3. Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Delivery 2011:326497. doi:10.1155/2011/326497

    Article  Google Scholar 

  4. Pezzoli D, Candiani G (2013) Non-viral gene delivery strategies for gene therapy: a “ménage à trois” among nucleic acids, materials, and the biological environment. J Nanoparticle Res 15:1–27. doi:10.1007/s11051-013-1523-7

    Article  Google Scholar 

  5. Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 21:640–645. doi:10.1016/j.copbio.2010.07.003

    Article  CAS  Google Scholar 

  6. Foldvari M, Kumar P, King M, Batta R, Michel D, Badea I, Wloch M (2006) Gene delivery into human skin in vitro using biphasic lipid vesicles. Curr Drug Delivery 3:89–93

    Article  CAS  Google Scholar 

  7. Zelphati O, Nguyen C, Ferrari M, Felgner J, Tsai Y, Felgner PL (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 5:1272–1282

    Article  CAS  Google Scholar 

  8. Kim TW, Chung H, Kwon IC, Sung HC, Jeong SY (2001) Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents. Pharm Res 18:54–60. doi:10.1023/A:1011074610100

    Article  CAS  Google Scholar 

  9. Chung Y-C, Lee H-J, Park J-Y (1998) Bilayer properties of the multiple-chain ion pair amphiphiles. Bull Kor Chem Soc 19:1249–1252

    CAS  Google Scholar 

  10. Bhattacharya S, De S (1999) Vesicle formation from dimeric ion-paired amphiphiles. Control over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation. Langmuir 15:3400–3410. doi:10.1021/la9808770

    Article  CAS  Google Scholar 

  11. Marques EF, Regev O, Khan A, Lindman B (2003) Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects. Adv Colloid Interf 100–102:83–104. doi:10.1016/S0001-8686(02)00068-4

    Article  Google Scholar 

  12. Tondre C, Cailler C (2001) Properties of the amphiphilc films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. Adv Colloid Interf 93:115–134. doi:10.1016/S0001-8686(00)00081-6

    Article  CAS  Google Scholar 

  13. Yeh S-J, Yang Y-M, Chang C-H (2005) Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles. Langmuir 21:6179–6184. doi:10.1021/la047207g

    Article  CAS  Google Scholar 

  14. Bramer T, Dew N, Edsman K (2007) Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 59:1319–1334. doi:10.1211/jpp.59.10.0001

    Article  CAS  Google Scholar 

  15. Rosa M, Miguel M, Lindman B (2007) DNA encapsulation by biocompatible catanionic vesicles. J Colloid Interf Sci 312:87–97. doi:10.1016/j.jcis.2006.07.084

    Article  CAS  Google Scholar 

  16. Wu C-J, Kuo A-T, Lee C-H, Yang Y-M, Chang C-H (2013) Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant. Colloid Polym Sci 292:589–597. doi:10.1007/s00396-013-3104-9

    Article  Google Scholar 

  17. Lee C-H, Yang Y-M, Chang C-H (2014) Enhancing physical stability of positively charged catanionic vesicles in the presence of calcium chloride via cholesterol-induced fluidic bilayer characteristic. Colloid Polym Sci 292:2519–2527. doi:10.1007/s00396-014-3285-x

    Article  CAS  Google Scholar 

  18. Peiró-Salvador T, Ces O, Templer RH, Seddon AM (2009) Buffers may adversely affect model lipid membranes: a cautionary tale. Biochemistry 48:11149–11151. doi:10.1021/bi901662b

    Article  Google Scholar 

  19. Bouvrais H, Duelund L, Ipsen JH (2013) Buffers affect the bending rigidity of model lipid membranes. Langmuir 30:13–16. doi:10.1021/la403565f

    Article  Google Scholar 

  20. Koltover I, Salditt T, Radler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281:78–81. doi:10.1126/science.281.5373.78

    Article  CAS  Google Scholar 

  21. Dan N (1998) The structure of DNA complexes with cationic liposomes-cylindrical or flat bilayers? BBA Biomembr 1369:34–38. doi:10.1016/S0005-2736(97)00171-5

    Article  CAS  Google Scholar 

  22. Kuo A-T, Chang C-H (2013) Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study. Langmuir 30:55–62. doi:10.1021/la403676w

    Article  Google Scholar 

  23. Regelin AE, Fankhaenel S, Gurtesch L, Prinz C, von Kiedrowski G, Massing U (2000) Biophysical and lipofection studies of DOTAP analogs. BBA Biomembr 1464:151–164. doi:10.1016/S0005-2736(00)00126-7

    Article  CAS  Google Scholar 

  24. Rodriguez-Pulido A, Martin-Molina A, Rodriguez-Beas C, Llorca O, Aicart E, Junquera E (2009) A theoretical and experimental approach to the compaction process of DNA by dioctadecyldimethylammonium bromide/zwitterionic mixed liposomes. J Phys Chem B 113:15648–15661. doi:10.1021/jp906777g

    Article  CAS  Google Scholar 

  25. Munoz-Ubeda M, Rodriguez-Pulido A, Nogales A, Martin-Molina A, Aicart E, Junquera E (2010) Effect of lipid composition on the structure and theoretical phase diagrams of DC-Chol/DOPE-DNA lipoplexes. Biomacromolecules 11:3332–3340. doi:10.1021/bm1008124

    Article  CAS  Google Scholar 

  26. Hawley-Nelson P, Ciccarone V, Gebeyehu G, Jessee J, Felgner P (1993) Lipofectamine reagent: a new, higher efficiency polycationic liposome transfection reagent. Focus 15:73–79

    Google Scholar 

  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  28. Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57–63. doi:10.1016/0022-1759(86)90215-2

    Article  CAS  Google Scholar 

  29. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277. doi:10.1016/0022-1759(86)90368-6

    Article  CAS  Google Scholar 

  30. Li W-T, Yang Y-M, Chang C-H (2008) Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant. Colloids Surf B Biointerfaces 66:187–194. doi:10.1016/j.colsurfb.2008.06.009

    Article  CAS  Google Scholar 

  31. Wu J-C, Lin T-L, Jeng U-S, Torikai N (2006) Neutron reflectivity studies on the DNA adsorption on lipid monolayers at the air-liquid interface. Physica B:838–840. doi: 10.1016/j.physb.2006.05.120

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan through Grants NSC 97-2221-E-006-094 and NSC-98-2221-E-006-098-MY3. Shu-Chuan Chen is acknowledged for the MTT test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Hsiang Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Yang, YM., Leu, KL. et al. Exploring physical stability characteristics of positively charged catanionic vesicle/DNA complexes. Colloid Polym Sci 293, 2239–2247 (2015). https://doi.org/10.1007/s00396-015-3608-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3608-6

Keywords

Navigation